computer market AE

（1） 03

PG
 club

－фла та пршто̀типа проүрадциата каı
 pás
 періоб̈ıкは̉ ПАпрофорıкク่я．

$20.0000{ }^{0} \mu \mathrm{plata}$

KAOE MHNA

Ká $\varepsilon \varepsilon \mu \eta$ va катафтàvouv ото PC Club
 каı games anó Eupळ̈rŋ каı А $\mu \varepsilon р ı к \grave{, ~ \mu а 乙 і ~} \mu \varepsilon$ óла та каıvoùpүıа пршто̀тuna проүра́ццата
 каı ठıєӨvoùs ayopás．

－data bases－סıєuӨuvoıoүрáфоऽ
－spreadsheets－оıкоvоиикג่
－communications
－үлш்ббєৎ проүрациатібцой， assemblers
－utilities
－oxeठiaon，graphics
－μ оибוкй
－єкпаıбвитıка̀，цаӨпцатıка̀
－games
$\Delta 1$ бкغта $5.2^{\prime \prime}$ ка। $3.5^{\prime \prime}$ ．

JUNIOR

COMPUIIR
$\triangle \triangle O K T H E L A$

SOFTWARE AEBE

Kа́тш TiӨоре́a ^окрióos Afive: EToupváoa 49-10682 AOHNA T-7 3604667 - 3604710 FAX 3608162 Oeo/vikn: ©wDerculioou 10A. inh 540849

EKDOTHE

MaphMuAwvo AIEYOYNTHE YROAIEYOYNTEL
 EIAIKOE EYMBOYNOE AIEYOYNTHE EYNTAEHE

2woring anflpou IYNTAKTEE / EYNEPTATEE
 Awo Advuporouitou Avtiung Ecubiakding suripeng Mateptang Ogodoang Kaikas

Heroos Zuyac anennc Apyoons tevtroch flaraeleuriou Nros Kcocváo os
 Mxänc Koutootas
YTEYOYNH OEEEAAONIKHE Oixitoo ETauph
EYNEPTATEE / ANTAMOKPITEE

АHM. EX
Woipn Musiuvó oxitoo ETaupí
Kneonátpa Eoviavonoülou
YMEYOYNE ENTYח®N
Xoudovén Apánoviou Abrva Bouyouaitr
DESKTOP PUBLISHING
Tiwpyos Baiopevas
kürac ETOuDOTOLIO

ATEAIE

Oexna Nywou
Mapic Raver poicunc Poon Bokavias
Kareava Karowios
DIEYOYNTHE TAPATOTHE Oóbupog Boìñ's ФתTOTPAФIE
 [PAMMATEIA Пönn Manaónuoün, Naurpwin חatooyd́w? KYK^OФOPIA/DIAKINHEH TEYX\&N Enüpos Tonos ^ORIETHPIO
 Natdoa Kakaŗ̌̀ Xevoouila Mnoupiroa

MONTAZ
Anyitong BEAXANS
$\triangle I A X \Omega P I E M O 1 ~ 4 / X P \Omega M \Omega N$ Anutipns Zapabivos EKTYחOEH
KuñÓDOS
BIBNIOAEEIA
Enüpog Bpakatoéno IYNAPOMEE
SOFTWARE AEBE ETOYPNAPA 49, AOHNA 10682

EYNDPOME
Eowtepikoú: 5.000
Eछ ตтерікой: 9.000
Künpoç: 9.000
Аигрікі: 9.000

OEMATA

E $\$ AHNIKA \& $\triangle I E O N H$ NEA
 3D BAR CHART
FILE EDITOR
ГРАФIKA ETON PC
AREXX ГIA AMIGA
АYミH ГTA ПРОВАHMATA TSN DRIVES
MATIKA ME TO MS-DOS
¿XEDIAZONTA Σ ITHN OOONH TOY 6128
204

BIBNIOПAPOYEIAEH
TEXNIKEL ANIMATION
OUHГIE Σ XPH $\Sigma H \Sigma$ TH乏 $\triangle I \Sigma K E T A \Sigma ~ \triangle \Omega P O$
MIKPES AГГENIE

TIME OUT

DRAGON'S BREATH 220
FINAL FRONTIER
221
BLACK TIGER 222
F15 STRIKE EAGLE II 223
PLAYER MANAGER 224
TV SPORTS BASKETBALL 226
IT CAME FROM THE DESERT 231
M1 TANK PLATOON 232
MANCHESTER UNITED 234
THE KRISTAL 235
HERO'S QUESTI 236

SCREENER

1० пршто β раßعıо кєрб์เбє о к． Toıaرaбı ω tns K K поios eivat poitnins tou μ a－ Өпиатікоu．Eva ano та β абь－
 калобхєठıабиєvои проүрац－

 $\beta \lambda \eta \mu a$ тпऽ $\delta \eta \mu$ ioupyıas tعтоו $\omega \mathrm{V}$ оӨоv $\omega \mathrm{v}$ ．

 каполая улшбоац．Оı полиплокотерея ०Өoves о $\omega \omega \varsigma$ عival пıо ठибко入о va $\delta \eta$－
 $\theta a v$ va $\delta \omega \sigma$ ouv $\lambda u \sigma \eta \sigma^{\prime}$ auto то про $\beta \lambda$－ μ каı пол入а ап＇auta to катацераv．
 прєпє va плпршооuv капоьо тцпиа в－ ६артпопя пои проврхетаו апо тія เбוо－ $\mu о р \varphi$ Ієऽ тои каӨє паквтои．

Tо проүраниа SCREENER проопа－ $\theta \varepsilon ı$ va $\lambda \cup \sigma \varepsilon$ auto akpı $\beta \omega \varsigma$ to поо乃л п－ $\mu \mathrm{a}$ ．Паргхеі та врүалвıа $\mu \varepsilon$ та опоыа uropouv va kataokeuotouv oӨoves हl－
 vatornta va $\sigma \omega \zeta \varepsilon \iota$ tı̧ оӨоveऽ nou $\delta \eta$－
 そovial ol oӨoves eıval to memory dump thc video ram evoc PC．
 xpnotns μ паıvel otov editor oӨovns o－ пои каı архı了еı тпv катабкви μ וая

 характпрєя（паvш апо ASCll 128），$\mu \varepsilon$ пп ßоךөєıа тои $\pi \lambda \eta к т р о и ~ F 10 . ~ К а ө \varepsilon ~ п л \eta-~-~$ ктро тотє аутібтотхє। бє биүкєкрицєvo характпра．H avtiototхıa t $\omega \vee \pi \lambda \eta$－

бтouv пatwvtas F3．To плпккто F4 $\varepsilon \mu$－

 F7 каı F8（xpш $\mu \mathrm{a} \mu \mathrm{\varepsilon} \lambda \mathrm{aviou}$ каı 甲ovtou avtiotoixa）．

То проүра μ а чибіка，μ пореı va

 vєৎ пои катабквиабтпкаv $\mu \varepsilon \sigma$ а апо в－
 ठı ε рүабıа．Maそı $\mu \varepsilon$ то SCREENER паре－ хоvtaı каı капоıа парабвıүната үıа то

$\varepsilon v a ~ п р о ү р а \mu \mu а . ~ Т а ~ \delta ı а ө \varepsilon \sigma ц \mu а ~ п а р а-~$ ठєıүमата a popouv μ оvo tıৎ ү $\lambda \omega \sigma \sigma \varepsilon \varsigma$ Basic，Turbo C kaı Turbo Pascal．Фuбıka

 Өعı η оөоvך прєпєı va үıveı капоıa ε ו－

 gotoxy，locate к $\lambda \pi$ ）σ ta kata $\lambda \lambda \eta \lambda \alpha$ on－
 tou плппктрои F3 tou SCREENER．

To проүра μ а SCREENER $\varepsilon \chi \varepsilon$ ү үра－甲тєı бє TURBO C（1700 пгріпои үрациєя
 C＋＋．

！
 $\mu \varepsilon$ عva проүрациа алла μ а олоклпрп β ィßлıоӨпкп про－ үра $\mu \mu а т \omega \vee$ пои вүрачє о к． $Г \varepsilon \omega \rho ү ו \circ \varsigma$ ．Bap日a入ıtnc．$\Sigma \tau \eta$ бuvexeia Өa пароибıaбтєı to киріотвро апо та проүрациата каı өа

То проүраниа STATS вхعו ба бко－
 $\mu \varepsilon т р о ~ п о и ~ а u t e \varsigma ~ \sigma \chi \varepsilon т ı \zeta о v t a ı ~ \mu \varepsilon ~ т \eta ~ \sigma т а-~$
 वuta μ пореı va вхоuv прокичвı апо пеוранатькєऽ $\mu \varepsilon т \rho \eta \sigma \varepsilon เ \varsigma ~ \sigma т о ~ \varepsilon р ү а \sigma т \eta-~$

 auta عוбаүovial үıа прытो чора апо то плпктролоүıо каı апоөпквиоvtaı бто бıбко，$\varepsilon \varphi о \sigma о \vee ~ \beta \varepsilon \beta$ аıа то $\varepsilon п ө и \mu \varepsilon ı ~ о ~$

 $\chi \varepsilon ו \omega v$ апо то проүра $\mu \mu$ ．Та отоוхвіа auta $\varepsilon \mu \varphi$ avi३ovtai $\sigma \tau \eta \vee$ оӨоv \quad a $\lambda \lambda a$ $\mu \pi о р о u v$ va tur $\omega \theta$ ouv каı σ то хартı．

 хрı 999），плпктролоүعı тоия аріӨноия пои провкича⿱ апо тıৎ $\mu \varepsilon т р \eta \sigma \varepsilon ı \varsigma . ~ O ı ~ а-~$ ріӨ μ о пои катах $\omega р \eta Ө \eta к а г ~ \mu п о р о и v ~ v a ~$ $\sigma \omega Ө$ ouv $\sigma \varepsilon$ архєıо бто ठıбко，عто। $\omega \sigma \tau \varepsilon$ av xpeıaбtouv капоіа a $\lambda \lambda \eta$ 甲ора va ε－ паvakinӨouv．H ठıaסıкабıа тпऽ हпа⿱㇒木－

То проүраниа иполоү！цвı аитоната

To COMPILE Eivaı हva проүра μ а
 ката капоьо тропо тп סıаסıкабıа тия $\mu \varepsilon \tau a ү \lambda \omega \tau t i \sigma \eta$（compilation），$\varepsilon \varphi \circ \sigma \circ \vee$ ठоu入 $\varepsilon \cup \varepsilon \tau \varepsilon \mu \varepsilon \tau \eta \vee$ MICROSOFT FORTRAN $4.01 \eta 5$ ．Перілацßаvвı ठuvatotnta عпı－ лоүпऽ обоv а甲ора тпv параүшүп кш－ ठıка үıa tov 8086 ท́ $ઘ$ દııка үıa tov 80286 （ yıa бuбтпиата AT）．

Ta проүра μ ата ERRORS－BAS عוvaı μ ккра каі аитотвл η проүра μ ата та о－

 TIME ERRORS oinv Quick Basic．

To GCOPY．EXE عıvaı हva проүра $\mu \mu$ a үpa $\mu \mu \varepsilon$ vo $\sigma \varepsilon$ TURBO $C \varepsilon \kappa \delta о \sigma \eta ~ 2.0 \mathrm{~kat}$ avtiypapei ta apxeia пои бu φ рwvouv

 va $\varepsilon п \iota \beta \varepsilon \beta a ı \omega \sigma \varepsilon ı ~ т \eta v ~ a v т і ү р а \varphi \eta . ~$

Tо проүра $\mu \boldsymbol{\alpha}$ NEWDIR вıvaı μ а па－

 popia үia to $\chi \omega \rho$ о mou auta kata入a μ－
 ठıбко）．

Emioṇc umapxouv каі ал入а про－ үрациата каӨара єпьтпиоvікои ха－ рактпра．Auta та проүраниата ипо入о－

 каі биниєтрікои трапг弓оعıбоиц аүш－ you．

COMPUTER \＆SOFTWARE／IOYNIOE 1990

a

AIEYOYNEIOTPAPOL

in

 т ε б капоוо архєıо о入оия tous yvwotous oas．Мŋпнцs χ хөŋккатє потє $\sigma \varepsilon$ عva $\sigma \omega \rho о$ прохвוра хартакıа，$\mu \varepsilon$ т $\eta \lambda \varepsilon$－ $\varphi \omega v a$ каı ठı $\varepsilon \cup \Theta \cup v \sigma \varepsilon ı$ ，ta опоıа о入о u－

Yпархоuv $\beta \varepsilon \beta$ ала пакета пои ava－ $\lambda a \mu \beta a v o u v v a ~ o p y a v \omega \sigma o u v$ tic סו६uӨuv－ $\sigma \varepsilon ı \varsigma ~ k a t ~ t a ~ t \eta \lambda \varepsilon \varphi \omega v a ~ \sigma a \varsigma . ~ E x o u v ~ o \mu \omega \varsigma ~$ ठио ßабіка $\mu \varepsilon і о v \varepsilon к т п \mu а т а . ~$

To пршто eıval to yeyovos otı aneu－ Quvovial $\sigma \varepsilon \mu$ а $\mu \varepsilon p i \delta a$ xp $\eta \sigma \tau \omega v$ поu
 aut $\omega v \tau \omega v$ пак $\tau \tau \nu$ ．Apa каı о ठ ठuvato－

 סuvatotntes tou．Auto o $\eta \mu$ aivei oti η
 $\lambda о т \varepsilon p \eta$（каі чибוка пוо апробוтך $\sigma \varepsilon$ баद），ооо по ठиvацнко үıvetal то пакв－

 ठєєиӨuvбıүрачои $\mu \varepsilon \sigma а$ апо проүра μ－ μ ата public domain．То про乃л $\eta \mu$ а пои б $\eta \mu$ וоирувıтаı о $\mu \omega \varsigma$ عival оті та про－ үра $\mu \mu$ ата $\delta \varepsilon v$ عival үра $\mu \mu$ va бта E入－ $\lambda \eta v ⿺ 𠃊 a, ~ a \lambda \lambda a ~ \sigma u v \eta \theta \omega \varsigma$ бта Aүү λ ıка．

То проүрациа пои кврбьбє то тріто ßраßвіо үрачтпкє апо тоу к．Точүкако
 Өuvoıoypapos．Eıvai по入u aпlos бтп xpクon tou каı ava入a μ ßaveı va opya－
 бая．То киріо μ гvou тои проүрацдатоя

 $\delta \iota \rho \theta \omega \sigma \eta$ umapxоvt ωv ع уүpap ωv ，va

 то архعוo．

Ta бтоххвıа пои そптавı то проүраи－ μ а हival to ovo $\mu a t \varepsilon \pi \omega v u \mu \circ$ ，to हпаү－

 пеठıо үıa паратпрךбєıऽ．

 $\mu \varepsilon \cup \varepsilon ı ~ ү ı a ~ \tau \eta v$ عupeo $\eta \tau \omega v$ हүYpa甲 $\omega \vee \mu \varepsilon$－ ба ото архモוо．

То проүра μ а вхє। то плвоvєктпиа

$\mu \varepsilon$ ठио тропоис．О бвіріакоц тропоৎ вו－ val о пוо арүоऽ，алла вıval kal о по عu－

 кета үpnyopos．Eivai o tuxaios tpo－ros

 проүра $\mu \mu$ а عוval үра $\mu \mu \varepsilon$ vo $\sigma \varepsilon$ GW－ BASIC，$k ı \varepsilon \tau \sigma ı \mu \pi o \rho \varepsilon ı t \varepsilon$ va to $\mu \varepsilon \tau a$ трє $\psi \varepsilon \tau \varepsilon$ عикола．

Ot viкŋтєऽ μ пороuv опотє $\theta \varepsilon \lambda$ ouv va перaбouv yıa va паралаßouv та хрпиатька тоиৎ єпа日入а．

COMPUTER \＆SOF TWARE／IOYNIOE 1990

CCS：OYइIA Σ YMBO 1 H Σ THN ПАНРОФОРІКН

H CCS（Constantinou Computer Stu－ dies）$\delta п \mu$ ıоирү $Ө \eta к \varepsilon$ то 1984 апо тои Г Г ε－
 $\delta \omega v \Delta \rho$ ．Euayy

 бтоv тонєа тПऽ П入ПрочорікПऽ．

 кпऽ，коллєүıакои єпипвठои，каӨюऽ каı окта $\mu \eta \mathrm{va}, ~ п \varepsilon \vee т а \mu \eta v a ~ к а । ~ т \varepsilon т р а \mu \eta v a ~$
 $\mu о р \varphi \omega \sigma \eta \varsigma ~ п \varepsilon р і \lambda а \mu \beta а v o v t a l ~ о \lambda а ~ т а ~ \Sigma \varepsilon-~$ цıvapia Плпрочорікпя，Үполоүібтнv каı бuvap ωv Ө $\varepsilon \mu a \tau \omega v$ ，пои ठıаркоuv а－

 $\mu \varepsilon v a$ aпo $\tau \eta$ EOK $\Sigma \varepsilon \mu i v a p i a ~ \tau \omega v ~ \varepsilon п ा-~$ $\chi \varepsilon ı \rho \eta \sigma \omega \mathrm{v}$ ．

 ккпаıбвибєı η CCS：а）Апочоוтоו $\wedge \cup-$

 Проүраицатібтп ҮполоүเбтьV $\mu \varepsilon \varepsilon$ в－ $\mu п \varepsilon i p i a ~ \sigma t o v ~ \chi \varepsilon i p i \sigma \mu о ~ u п о \lambda о ү ו \sigma t \omega v ~ P C ~$ kaı MULTIUSER．β ）Пtuxıouxoı TEI ń AEI

 бוкотпта тои проүрациатібтп иполоүі－ бт ωv ．Прєпєı va tovioөधı отı η C．C．S．ка－ $\theta \varepsilon$ xpovo $\delta \eta \mu$ ioupyei vea $\sum \varepsilon \mu$ ivapia Плпрочорікпऽ бин甲шva каı $\mu \varepsilon$ тıऽ впи－

 каІ عкт $\varepsilon \lambda \varepsilon \sigma \varepsilon \mu \varepsilon \mu \varepsilon \gamma a \lambda \eta$ ппıтихıа үıа users to $Т \mu \eta \mu$ ．＂Мเкроплпрочорікп ка। Xвıрıбноя PC＂$^{\prime \prime}$ то опоוо параколоиӨп－ $\sigma a v$ по $\lambda \lambda \varepsilon \varsigma$ ठ $\varepsilon \kappa \alpha \delta \varepsilon \varsigma ~ \sigma \tau \varepsilon \lambda \varepsilon \chi \omega v$ ．То т $\mu \eta$－
 Lotus，DBase，Word Processing kal inv хрךб η tou MSDOS．Aro т η vea xpovia ε－
 өع μ ата．

Тعлоऽ $\eta \delta \eta$ паvш апо 1500 атона ع－ xouv апочоıпббı апо т ηv C．C．S．каı $\mu \varepsilon$－

 Проүрациатібтои，Ava入utou，$\Sigma \tau \varepsilon \lambda$ ． хоия Плпрочорікпя．Апо тп vea xpovia

Өa uпархеı каı вıбıкотпта＾оүıбтои Mn－ xavoypayou．

Гıа перібботєрєя плпрочорıяৎ μ по－
 6822152， 6841214

IAПЛNIKE Σ ПРЛТОТҮПІЕ

 бтрорПऽ，үعүоvоৎ пои каӨє ал入о пара бu β ßaıvel．

Auto，о $\omega \omega$ ，поu عүіvє по入u tnऽ μ о－ ठаৎ бinv lanwvia，eivai katı картеৎ， харך бтіৎ опоוєৎ $\mu \pi о р \varepsilon$ каveis va ano－

 каveı тıৎ аүорєৎ тоu $\mu \varepsilon \chi \rho!$ va $\varepsilon \xi a v t \lambda \eta$－
 т η v＂поupineıvto koavto＂，ol lanwves
 $\beta \omega \varsigma$ апо аито пои биц阝аıvel $\mu \varepsilon$ тіৎ пा－
 kaı $\mu \varepsilon \tau \mathrm{ta} \psi \omega \mathrm{vl}$ そouv！

Movo пहроt，бזךv lanwvia，xpךбıцо－

 عıvai отı тє入ıка，боча праттоvtгя，ol la－ $\pi \omega v \varepsilon \varsigma$ катор $\theta \omega$ vouv va $\mu \eta v \mu \pi a i v o u v$

бтои пвірабно μ Іая побтштıкпя кар－ tac．AvtiӨعта，$\mu \varepsilon$ тоv тропо аито ито－ $\beta a \lambda \lambda o v t a l ~ \sigma \varepsilon$ otkovoui $\varsigma, ~ a \varphi o u ~ \eta ~ \pi \lambda \eta$－ ршиך пропүعוта। tпs aүopas．

COMPUTER FOCUS

$\Delta \varepsilon к а б \varepsilon \varsigma ~ п \varepsilon р і о б ı к а ~ к а ı ~ \varepsilon \varphi \eta \mu \varepsilon р і б \varepsilon \varsigma ~$
 плпрочорікпя，ठuбко入вuovtas tous $\mu a v a t \zeta \varepsilon \rho$ kal tous हוסtкous va ßpouv викола μ а п ппрочоріа пои $\theta \varepsilon \lambda о u v$, $\chi \omega \rho ı \varsigma$ va про φ वaıveı va tous катак λ и－ そぇı пробӨعто и入ıко．

Eiठika newslletters μ mopouv va β оп－ ӨПбouv $\sigma \tau \eta v$ пहріпт $\omega \sigma \eta$ autף，a入入a η Pinpoint Information Corp．ото Chantly
 ßоクӨŋのєı перібботєро．

To kaivoupyio ths newletter＂Com－
 үıa каӨع $\sigma u v \delta р о \mu \eta \tau \eta . ~ O ı ~ \sigma u v ठ р о \mu \eta \tau \varepsilon \varsigma ~$

 letter．Мعба бто हvtumo auto o ouvठpo－ $\mu \eta \pi \eta \varsigma ~ \theta a ~ \beta p \varepsilon ı ~ \sigma u v о \psi ı \mu \varepsilon v a ~ a p \theta p a ~ п о и ~$ впилеүоvta। апо 100 каı плеоv вкठо－ бєıৎ перıоठıк ω V каı $\varepsilon \varphi \varphi \eta \mu \varepsilon p ı \delta \omega \mathrm{~V}$ ，апо

 ठıapepouv．

COMPUTER \＆SOFTWARE／IOYNIOE 1990

$\mu \varepsilon v a$ бто fax tou $\sigma u v \delta \rho о \mu \eta \tau \eta$ ．
 $\varepsilon п \varepsilon к т а \sigma ı \mu \eta \mu \varepsilon \chi \rho!~ t a ~ 64 ~ M B ~ к а ı ~ \mu v \eta \mu \eta ~ R O M ~ 64 ~ K b y t e s ~ \mu \varepsilon ~ \delta и о ~$ uпоठохєৎ үIa пробӨعin ROM 64 Kbytes．
 taxutnia．
 इYNAГEPMO ПРОГЛПIKOY H＾EKTPONIKOY ҮПОАОГІІТН

To ouбinua Computer Guardian ano inv عтаıрعıa Harvest Electronics апотвлعıтаı апо типопоוп $\mu \varepsilon \vee \eta \eta \mu к а р т а ~ п о и ~ т о п о-~$

 тоирүıa $\eta \chi \eta$ тіко ouvaүعрио каı μ іа μ татарıа．
 пта каו о оплıбноৎ тои бибтпиатоऽ үıvetal autouata otav о

To Computer Guardian $\mu \pi о \rho \varepsilon ı$ va $\lambda \varepsilon ı$ тоupynoei μ ovov otav

ПAIXNIDIA ГIA ATOMA ME EIAIKE ANAГKE

 auta va uпहриıкпоouv ката капоьо тропо т η v avanпрia touc． H бعıра проїоvt ωv aпо т ηv عтаıрعıa T．H．F．（Toys For the Hand－

COMPUTER \＆SOFTWARE／IOYNIOE 1990

AEXONENTE ME

tnv 弓由ура甲ıkí
тпу фштоурафі́a
то 6 ivteo
thy μ ouaikí
та паıхvíia
tnv Tn入sópaon
tnv ठrapípion
TIS OIKOV．عाIOTh゙リES
TIS धाixeipíneris
TIS Ypaqikés TEXVES

4 line
 Cleommodore

A line
Bag．Нраклвíou 26
Oعбоалоviкп 54624
40 ó ópopos
Tท ．： 229595
АПОФАГІГТЕ TO．．．TתPA
THAEФ』NH乏TE MA乏．．．इHMEPA

DPL COMPUTER SHOP．

HOME

ATARI 520 STE uع hovox OOÓvn MIKPH ПPOKAT kai 8 סóos $\frac{1}{\text { Canó } 12500}$

 AMSTRAD CPC－ 6128 Hovox．OӨठ́vn MIKPH ПPOKAT，kai 6 ס́oosic anó 10.000

 COMMODORE 64 ＋kaooeró甲uvo MIKPH ПPOKAT．кal 5 ס́óosic anó 7600 AMIGA $500+000$ NH 1084 P MIKPH ПPOKAT．kal 8 סઠ́ası anó 20000

PC

SAMSUNG SPC 300V 2DD MIKPH ПPOKAT रal 10 סÓozIS anó 15000
SAMSUNG XT 3000 V 1F＋ 1 HD 20MB MIKPH ПPOKAT Kal 10 DóoEis ano 18,900 SAMSUNG SPC 30001 FD MIKPH ПPOKAT Kal $8 \delta \delta 0$ EIG anó 13.000 SAMSUNG SPC 3000 1FD $525+1$ IFD 3.5 MIKPH MPOKAT，kaı 8 ס́oorı ano 14800 SAMSUNG SPC 3000 1FD +1 HD 20 MB MIKPH ПPOKAT．kaı 9 ס0́oहIS anó 15.700 AMSTRAD PC 1640 20D EGA MIKPH ПPOKAT kai 9 ठ́óoeiç anó 20.600 AMSTRAD PC 1640 2DD MD MIKPH ПPOKAT kaı 9800081 Canó 15.900 AMSTRAD PC 1512 2DD MONOX．MIKPH ПPOKAT ，kaı 8 ódo६is anó 15.100 AMSTRAD PC 1512200 ETXP．MIKPH ПPOKAT．kai 8 ठóozic anó 18100 ATARI PC－ 1 MIKPH ПPOKAT Kal 8 do08IS ano 13.000 ATARI PC－3 2DD MIKPH ПPOKAT．Kaı 8 ס00 1 IG ano 15.700 HYUNDAI 640 K （HER CGA）2DD MIKPH ПPOKAT kal 9 סóoric anó 13.000
 EURO PC $\mu \varepsilon$ HOVOX，OOOVП MIKPH IPOKAT Kal 8000ε S ano 1,600

 EURO XT 1FD＋HD 20 MB MON．OOONH $12^{\prime \prime}$ MIKPH ПPOKAT．Kai 8 döos

EKTYח®TE

STAR LC－ $10 \|$ MIKPH TPOKAT Kal 6 סóoziç anó 7.000 STAR LC－ 10 COLOR MIKPH ПPOKAT．Kai 6 ס́óobic anó 8.500 STAR LC 2410 MIKPH ITPOKAT，kal $78000 \varepsilon 1 \zeta$ anó 9.300 SWIF 24 CITIZEN MIKPH ПPUKAT Kai 7 סOOEIC，anó 11,100 CITIZEN MSP－ 15 E MIKPH ПPOKAT．KaI 7 ठర00 CITIZEN MSP－ 45 MKPH TRPOKAT Kal 88000ε IS an＇ 11000 CITIZEN MSP－ 45 MIKPH
AMSTRAD DMD 4.000 MIKPH ПPOKAT．Kal 6 K 0 KOEIS ano 9.000 SEIKOSHA SP－ 2000 AI MIKPH ПPOKAT Kal 6 ס̈OठEIC anó 7250

DISC DRIVES

COMMODORE $1541 \|$ MIKPH ПPOKAT，ка। 4 סóosı̧ aחÓ 8.000 FDD 5， $1 / 4$（COMQUEST）MIKPH ПPOKAT，каı 3 ठóoci̧ anó 7.700

OOONE

COMMODORE 1084 P ETXPQMH MIKPH ПPOKAT，Kal 6 ס0́osic and 9.500 ATARI SM 124 MONOXP．MIKPH ПPOKAT．kal 3 ठóozi̧ ań 8.000
EKAHPOI \triangle İKOI
KALOK 20 MB＋CONTROLLER MIKPH ПPOKAT Kal 5 סóasic ano 8.400 SEAGATE ST－ 238 R 30 MB ＋CONTR MIKPH ПPOKAT．ka 5 dóociç anó 10.200

ПЕРІФЕРЕІАКА－ANAAתЕIMA
 EE TIME AEYNATSNIITEE

JOYSTICKS－$\triangle I \Sigma K E T E \Sigma-\triangle I \Sigma K E T O O H K E \Sigma$－
ME AANOTAINIEE－KAAYMMATA
DRIVE CITIZEN $3.5^{\prime \prime} 720 \mathrm{~KB}$（ME FRAMENT 5.25 ）
DRIVE CITIZEN $3.5^{\prime \prime}$（ME FRAMENT 5.25 ）

EONOKAPTA－EMПOPOKAPTA DINERS CLUB－IONOKAPTA

AГ．KתNETANTINOY \＆ГEPANIOY 44 OMONOIA THA．： 5240986

 $\eta \delta \eta$ undns texvonoyias nou oha tous exouv oxeठiaotel yia

 Өıбرat то $\mu \mathrm{\mu} \mu$ हІठıkes avaykes oxı μ оvo euxapioinon a入入a про－
 o 1 ata kouvias yia $\mu i k p a$ kai $\mu \varepsilon y a \lambda a ~ \pi a i \delta ı a ~ \varepsilon x o u v ~ \zeta \omega v \varepsilon \varsigma ~ a-~$ бчa入єias kal umapxeı kat＂ßapka＂kouvias nou xwpaعı हva ń

 veltal otav to kpatael kavels opӨio kal ol ठovnoeıs otaرata－ v otav to akou $\mu \eta \boldsymbol{\sigma}$ оu ε katw．To fan Tube عivai пapo

НАЕKTPONIKO Ф $\Sigma \Gamma$ ГIA ТҮФ \wedge OY Σ

甲 人OUs Xpクーtes．

XpпонопоוんVtas tous $\eta \lambda \varepsilon k$ тpovikous umo入oyiotes $\mu \varepsilon$ to бибinua Mпpaïy，та тичла атона $\omega \varphi \varepsilon \lambda$ оuvtal yıa прштп φ о．
 кєı

 Mrpaly．

Auto to onuavtiko otov koouo twv
 ті та тич λ а ато а Өа єхоиv перібботв－ $\rho \varepsilon \varsigma$ عukaıpı६̧ va ßpouv ठou入દia．
$\Sigma u \mu \varphi \omega v a \mu \varepsilon$ то перıоठıко тпऽ үعриа－ vikņ aعpoпорікпऽ عтalpeias＂＾ou－

 а入入єऽ прооठоt пои ε хоuv $\sigma \eta \mu \varepsilon เ \omega \theta \varepsilon$ ו
 вфарио弓оviaı σ тпр по η Марипоирүк tᄁs Δ utikņ Г $\varepsilon \rho \mu$ avias．
Σ то Мпарипоирүк леıтоирүвı μ іа прштопоріакп бхо入ך Мєбпऽ Екпаıठви－
 tov коб μ о．$\Sigma \tau \eta \sigma \chi \circ \lambda \eta$ autף，та тич λ а паıठıa $\delta \varepsilon v \mu$ а日aıvouv μ оvo va үpapouv каı va ठıaßaそouv，a入入a ठıठaбкоvtaı
 vato va параколоuӨŋбouv，опшৎ Фuбt－ кп，Маөпиатіка каı Х $\eta \mu \varepsilon ı a$ ．То $\mu a \theta \eta \mu a$

$\varepsilon \iota \delta \iota \kappa \omega v$ avaү $\lambda u \varphi \omega v$ xaptwv，yıa va μ то－ pouv ta matठia va alo日avovial ta $\sigma \chi \eta \mu a \tau \alpha \tau \omega v \chi \omega$－ $\rho \omega v, \tau \omega v$ ßouv ωv kal t $\omega v \omega \kappa \varepsilon a v \omega v$ ． Параллпла вкпа।－ ठعuovial σ то Өa－
 vo $\sigma \mathrm{KI}$ ，σ to youlvt бعрழіیүк，σ тпレ о－ pعıßaбıa kaı т η v ıп－ maбia．Oı μ аөŋтеs тท $\sigma \times 0 \lambda \eta \varsigma$＂Мп入ı－
 ota＂μ aӨaivouv va عival ave $\Psi \omega v ı \zeta o u v, \mu a y \varepsilon ı \rho \varepsilon u o u v ~ k a t ~ o p y a v \omega v o u v ~$ Tov $\varepsilon \lambda \varepsilon \cup \theta \varepsilon \rho \circ$ Xpovo tous．To Map－

бто апधvavit пह弓обронıо，avaү入ичо। xaptes tns по入Пऽ tous סוعuko入uvouv va пробаvato λ ıotouv． H по $\lambda \eta$ tou Map－

 autous пара $\mu \varepsilon v o u v ~ \varepsilon к \varepsilon ا ~ к а ı ~ \mu \varepsilon т а ~ т о ~ т \varepsilon-~$ $\lambda о \varsigma \tau \omega V$ बпоuठ ω V tous．

ГIA NA MAIZETE GAMES ：

 поис поu：
 пои киклочорои́v otףv aүoрá．
 μ óvo uாo入oyıotท́（PC，Amstrad，Amiga，Atari， $\kappa \tau \lambda$ ）．
 oxetikí opoגoyia．
 tous үıa ह́va пaıxviठı $\mu \varepsilon$ owotá $\varepsilon \lambda \lambda \eta v i \kappa \dot{\alpha}$.

 кои́ нас（тทл．3604667，3604710，к．$\Delta \eta \mu \eta$ трíou aпó 2.00 દ́ $\omega \varsigma 4.00 \mu \mu)$ ．

Havakaivion tou $\sigma к \lambda \eta \rho o u$ ठı－ бкоu عıvaı σ रहтıka aплク סıa－ бıкабıа．Аито пои препвı пршта an＇о入a va каvetє ε ו－ vai va tov каӨарıбєtє апо та
 т ε va tov $\mu о р ф о п о і \eta \sigma \varepsilon т \varepsilon ~ \sigma a v ~ v a ~ \eta t a v ~$ kaivoupyios，$\beta \varepsilon \lambda$ tiwvovtas $\beta \varepsilon \beta$ aia t thv
 vтапокріӨвı бтоv тропо пои хрךбוцо－

 бкои：то чибтк тропо $\mu \varepsilon$ тоV опоוо та
 бко，то лоүкко тропо $\mu \varepsilon$ тоv опоเо та архєıa баৎ оруavшvoviaı бع ипоката－ лоүоия каі tov тропо $\mu \varepsilon$ тор опоьо о ठь－
 partitions．

「іа то DOS，о оклпроя бая ठıбкоя
 тоируıко бибтпиа ко μ атıа弓вı каөє архєıо бє полла μ крра т т $\eta \mu$ ата，каі та топо日عтєा $\sigma \varepsilon$ clusters．To $\mu \varepsilon ү \varepsilon Ө$ оऽ $\tau \omega v$ т $\mu \eta \mu a t \omega v$（пои вıval $2 K$ ）$\varepsilon \xi$ артатаı апо тทv $\varepsilon к \delta о \sigma \eta$ тои DOS каӨेऽ каו апо то $\mu \varepsilon ү \varepsilon Ө$ оৎ тои бклпрои ठıбкои．
 архвוои бто ठוбко，то DOS пробпа日в।

 yוatı عvסıa $\lambda \omega v$ apx $\varepsilon \iota \omega v$ ．Otav $\sigma \beta \eta \sigma \tau \varepsilon$ капоוо $a p-$

 бıаөєбןо，алла каveva апо та каı－
 ठıа акрı $\beta \omega \varsigma$ clusters пои β рібкота⿱ ε－
 та плеоvaそоvta clusters опоибПпотє ßрєı $\varepsilon \lambda \varepsilon и Ө \varepsilon \rho о ~ \chi \omega \rho о ~ \sigma т о ~ ठ ı \sigma к о . ~ А и т о ~ \varepsilon-~$

 алла ठıабкорпьб $\mu \varepsilon v a$ бє ठıачора $\sigma \eta$－ $\mu \varepsilon ı a$ ．

Гіa va $\mu п о р \varepsilon \sigma \varepsilon ı ~ \eta ~ к \varepsilon \varphi а \lambda \eta ~ \varepsilon ү ү р а-~$

 хعıои，ппүаıvoврхєtaı ano cluster $\sigma \varepsilon$

「ia va emitaxuvӨouv oı 入eıtoupyies tou бıбкои η Өграпєıа вıvaı va топоӨєтп－ Өouv ta clusters tou $\kappa a \theta \varepsilon$ apxعiou $\sigma \varepsilon$ бuvะХо $\mu \varepsilon v \varepsilon \varsigma ~ Ө \varepsilon \sigma \varepsilon ı \varsigma$.

Yrapxouv ठuo tponot үıa va үıveı

ananenite TON IKAHPO zai AIIKO

OГO ПIO ПAАIO乏 EINAI O $\Sigma K \wedge H P O \Sigma ~ \Sigma A \Sigma ~ \triangle I \Sigma K O \Sigma, ~ T O \Sigma O ~$ BPA \triangle YTEPH IINETAI H Λ EITOYPCIA TOY．חPIN OM $\Omega \Sigma$
 AПОФA乏I乏ETE NA TON ANTIKATA乏TH乏ETE ミKEФTEITE OTI ПPOГӨETE OIKONOMIKE \triangle AПANE ．AYTO ПOY XPEIAZELTE EINAI XPONOE，MEPIKA FLOPPY DISCS KAI THN EK \triangle OEH 3．3 TOY DOS．

бєтє капоьо апо та вıбıка проүрациа－ tа пои киклочороuv бто в пооріо ка। бuvnӨんৎ бuvoठعuouv проүрациата в－
 ton Utilities ń ta PC Tools Deluxe．

O ठعutepos tportos عival va xpクot－
 vยtє backup o $\lambda \omega \mathrm{v} \tau \omega \mathrm{V}$ apXeו $\omega \mathrm{v}$ кal va та दаvачортшбєтє，ачои пропүоииє－

 бє $\sigma u v \varepsilon \chi \circ \mu \varepsilon v a$ clusters，$\beta \varepsilon \lambda$ тiwvetal kaı η апоठоб η tou ठıбкоu．

ТАКТОПОIHटTE TA APXEIA Σ A Σ

Нкєца入п $\varepsilon ү ү \rho а 甲 \eta \varsigma / a v a ү v \omega \sigma \eta \varsigma$ тои ठıбкou бas yıa va ßpeı عva apхعıо пре－ пยı va ठıaßaбعı т $\eta \vee \pi \varepsilon p ı o \chi \eta$ FAT（File A1－ location Table），μ ıа عıठıкп перıохך бто ठıбко бая η опоוа перієхєь та vоицвра t $\omega \mathrm{v}$ clusters σ та опоia β рібкоvial ta

 рıбботеро ßрıбкоитаı по коита бт η V періохП FAT，тотє η кєца入П вүүра－
 $\lambda a \sigma \varepsilon$ т тахUt ε рa．
 поเвı капоוо архعıо عıvaı tuxaıa סıa－

бкорпьшеva бто ठıбко．To DOS апла
 clusters nou θa ouvavt $\eta \sigma \varepsilon$ ו．$O \mu \omega \varsigma ~ о \mu \omega \varsigma$
 vo）ठІбко，тотє та прюта clusters σ та о－
 Bpıбкоvtal пıо коvia бтףv перıохŋ FAT．

Пршта ап＇ола，апорабוбтє үıа тךv орүavшoŋ tои ठıбкои бас．$\Delta \eta \mu$ іоирү η－

 FAT，опшऽ үıа парабвıүиа та архвıа

 v ωv та опота $\delta \varepsilon v$ проквıтаı va $\mu \varepsilon$ та－
 коvta oin FAT．AvtiӨとta，ta apxeia סє－
 Өavov va xaoouv inv aпоклвıбтік η touç ठוદuӨuvon．

BE \wedge TI $\Omega \Sigma T E T O$
 世AEIMO T Ω N APXEI $\Omega \mathrm{N}$

 DOS va β peı apxعıa oxı μ ovo tou tрعхо－ vtos directory，μ пореı va $\sigma u \mu \beta a \lambda \varepsilon ı ~ \sigma T \eta V ~$
 алла $\mu п о р \varepsilon ı ~ \varepsilon п и \sigma П \varsigma ~ к а ı ~ v a ~ t o v ~ \varepsilon п и \beta р а-~-~$ ठuveı．

Kata тп ठıарквıа $\psi а \xi!\mu$ атоৎ тои μ о－ vomatiou to DOS $\psi a \times v \varepsilon ı$ ta subdirecto－ ries $\varepsilon v a ~ п \rho \circ \varsigma ~ \varepsilon v a ~ \mu \varepsilon ~ п \eta ~ \sigma \varepsilon ı \rho a ~ \mu \varepsilon ~ п \eta v ~ o-~$ moia auta $\varepsilon \mu \varphi a v i \zeta o v i a i ~ \sigma t \eta v ~ \varepsilon v i o \lambda \eta ~$ PATH．H taXutnta au ξ аvetal $\varepsilon \varphi^{\prime}$ обov o

ката入оүоৎ हival μ ккроৎ каі тактопоוך－ $\mu \varepsilon v o s ~ к а т а ~ а u \xi о u \sigma a ~ \sigma \varepsilon ı р а ~ \sigma п о u ठ а ı о-~$ тптаৎ．Av μ пореוтє，періорібӨعاтє $\sigma \varepsilon$ ठuo μ ovo directories σ T $\eta \mathrm{V}$ عvto $\eta \eta$ PATH， eva yıa ta utilities tou проүраниатоя
 үعऽ）．
$\mathrm{M} \eta$ хрךбщопоเвוт потв то оvоиа ε－ vos floppy disc otov kata入оүо тоu path． $\Sigma \tau \eta \vee \pi \varepsilon р ı \pi т \omega \sigma \eta ~ п о и ~ ठ \varepsilon \vee ~ \varepsilon ı v a ı ~ \varepsilon т о \mu о, ~ т о ~$ DOS өa пробпаӨпбеı бıyoupa yıa ка－ поьо хроуіко ठıабтпиа va то ठıаßабеı
 кон \quad каı av to drive عival हтоıцо，η а－
 vaそŋino $\mu \varepsilon \sigma \omega$ path xpovoßopa．

 FIG．SYS пробӨعбтє $\mu \mathrm{Ia}$ ava入оүๆ үра $\mu \eta$ ，єкто弓 каו av тргхєтє капола вчар－ $\mu \circ ү \eta$ ń utility nou $\delta \varepsilon v$ ouviota katı ε－ тоьо．Н үранип пои Өа прєпєі vа про－
 η BUFFERS $=20$ ． H uпар $\bar{\eta}$ пара по $\lambda \lambda \omega \mathrm{v}$ ń avtıӨгta по入u $\lambda ı \rho \omega v$ buffers каӨıбта то ठıбко бая арүо．

Н пробठıоріб μ оऽ t ωv BUFFERS ка－
 үוбтท，опои то DOS крата та $\delta \varepsilon \delta о \mu \varepsilon v a$ пои пробчата вхгı ठıаßабвı апо то ठь－ око．Av ol п入прочорієऽ auteऽ दava－
 vaкт ω vtas autes ano in μ v $\eta \mu \eta$ avti a－ по то ठıбко．

ПРOгЄE ENTOAHE FASTOPEN

$\Sigma \tau \eta v \pi \varepsilon р ı \pi т \omega \sigma \eta$ пои ठвv uпарххє， $\pi \rho \circ \sigma \theta \varepsilon \sigma \tau \varepsilon$ т $\eta v \sigma$ бо AUTOEXEC．BAT ap－ xعוo бac．Me inv हvto η autnv to DOS өа апоөпкєибе। हva avtiypa甲о тоu directory entry yıa $k a \theta \varepsilon$ apXعıo tou $\sigma u-$ отпиатоя пои калеітв．
 бєтє va каvєाє пробпглабך бє капоюо
 tal каı Өa то ழортшбعı пाо үрクүора． $\Delta \varepsilon v \theta a$ то $\psi a \chi v \varepsilon ı ~ \delta \eta \lambda a \delta \eta$ бта ठıачора directories kal subdirectories．Mг 入ıүa 入o－

 mo ouxva．

KA＠APIITE TO

 тоऽ－катабтрочŋऽ（ $\sigma \beta \eta \sigma \mu$ атоৎ），$\omega \sigma \tau \varepsilon$

 арквта тобо $\sigma \varepsilon$ тахитпта，обо каו $\sigma \varepsilon$ $\chi \omega \rho$ ．

\triangle НМIOYРГНГTE ENA ПАНРЕГ ВАСКUP

Пріv каvetя backup to ठıбко баৎ，甲povtiote va kavete set to archive at－ tribute yıa ола та архعıa баৎ，хрпбıцо－ поı ωv tas т $\eta \mathrm{V}$ عvto $\eta \eta$ ATTRIB．

Н паракаты вvто入п θ а баs β опөп－ бहı va тактопоıПбетє па入ı та archive bits o $\lambda \omega \mathrm{V} \tau \omega \mathrm{V}$ apx $\varepsilon 1 \omega \mathrm{~V}$ tou drive C ：

ATTRIB＋A C：$\left.\right|^{*}$ ．＊／S
Av Өع入єtع va kavete backup o入ou
 $\mu \pi о р \varepsilon і т \varepsilon$ va то кауєтє $\mu \varepsilon$ т η г парака－ т ω हито η ：

XCOPY C：\＊．＊A：／M
H XCOPY $\mu \varepsilon \tau а \varphi \varepsilon \rho \varepsilon i$ ta apxeia $\sigma a s$ amo to root directory oto drive A：．Xpクot－
 $k a \theta \varepsilon$ subdirectory．
 $v a k a \theta a p ı \zeta \varepsilon!$ то archive bit үıa каөє ap－
 عvto入n XCOPY va $\mu \eta v$ то दavaavtiypa－ $\varphi \varepsilon$ ．

Otav үعرıбєı μ Ia ठıбкєта，то DOS Өa баs $\varepsilon \mu \varphi a v i \sigma \varepsilon i$ avtiotoixo $\mu \eta v u \mu a$ ．To－

 бuvexiote．Beßaia to DOS exel kpain－
 θ а бuvexıбधا aпо то бпиعוо бто опоוо عıхє бта $\mu a \tau \eta \sigma \varepsilon$ ．
 тпv عvio η В BACKUP үıа проүра $\mu \mu$ ата та опоוа вıvaı аркєта $\mu \varepsilon ү а \lambda а$ каı ठвv $\chi \omega \rho о u v$ б $\varepsilon \mu$ Ia μ оvo ठıбкєta．

KANTE LOW LEVEL FORMAT $\Sigma T O$ II KKO इA Σ

Oı перıбботвро। disc controllers ε－ Xouv $\varepsilon v \sigma \omega \mu a \tau \omega \mu \varepsilon v \eta$ σ T η ROM μ La Low Level format poutiva．Ta проүрациата mou kavouv Low Level format סiafi日e－ vtal हmions oav ouбtatika т $\mu \eta \mu a t a$ T ω V IBM Advanced Diagnostics yIa AT каі XT $\mu \eta \chi$ Х $\quad \eta \mu a t a$.

Ектоs апо то каӨарібна тои ठıбкои $\sigma a \varsigma$ ，to low level format θ a $\beta \varepsilon \lambda \pi \iota \omega \sigma \varepsilon$ ו тпv апоботькотпта тои бк ппрои баৎ ठь－ бкои каı θ а апа入 $\varepsilon ı \psi \varepsilon ı ~ \lambda a \theta \eta$ типои＂Sec－ tor not found＂．Ta bits пои aпоөпкеио－ vtaı σ то ঠıбко σ таठıака $\varepsilon \xi а \sigma \theta \varepsilon v o u v$,
 $\mu а ү \vee \eta \tau ו k a \mu \varepsilon \sigma a$ ．

Av каı $\mu \varepsilon$ то үрачıно вvos apxعıои anokaӨıбtataı η เбхиৎ $\tau \omega v$ bits σ т η бu－

 sectors（sector identification marks）$\delta \varepsilon v$
 v $\eta \mu \varepsilon \rho \omega$ vovtal μ оvо $\mu \varepsilon \tau а$ ano low level format．
 бкоu $\sigma a s$ өa $\varepsilon п а v a \varphi \varepsilon \rho \varepsilon ı$ ta identifica－ tion bits tou sector $\sigma \varepsilon$ п $\lambda \eta$ Пр $1 \sigma \chi u$ ．Tau－ toxpova $\mu \pi о \rho \varepsilon ı$ va β ряı ta xa入a $\sigma \mu \varepsilon$ va sectors mou tuxov unapxouv．

KA＠OPILTE TO INTERLEAVE

 format tou бk n npou סıбкоu үıvetal kai o каӨоріб μ оऽ tou interleave，$\omega \sigma \tau \varepsilon$ oI $\pi \lambda \eta$－ рочорıєя va ঠıaßaそovtaı ano to ठıбко
 бтпиа．

О бклпроৎ баৎ бıбкоৎ ठєv ठıаßаそधı
 $\mu \varepsilon p i k a ~ s e c t o r s, ~ п р о к \varepsilon ı \mu \varepsilon v o u ~ v a ~ \delta ı a ß a-~$ бєı í va үра廿عı $\sigma \varepsilon$ капоוо апо auta．Oı IBM XT uпо入оүเбtєৎ ठıaßa̧ouv kat үpa－ youv $\sigma \varepsilon \kappa \alpha \theta \varepsilon \varepsilon к т о$ sector．Exouv $\delta \eta \lambda a-$ ठ η interleave $1: 6, \varepsilon v \omega$ ta AT EXouv 1：3．

О каӨорібноৎ tou interleave үıvetal عико入а．Ta перıбботвра utilities $\zeta \eta$ ทouv
 ठıaסıkaбıa tou low level format．
 yıa va пробठıорıбетє то β हлтіото inter－

 $\rho a ~ t \omega v ~ \delta \varepsilon \delta о \mu \varepsilon v \omega v$ ．МП Өعтєтє потє in－ terleave 1：1，हKtoৎ KI av o controller tou бıбкоu $\sigma a \varsigma$ عıvaı عıסıка $\sigma \chi \varepsilon \delta ı a \sigma \mu \varepsilon v o \varsigma ~$ yıa $\varepsilon v a$ tદtoıo interleave．

Av o uno入oүıбins oas eival ypnyo－ ротعроৎ ano عva koוvo XT ń AT（8MHz XT，12MHz AT í 80386），тотє үıа пєріб－
 $\tau \omega \sigma \varepsilon \tau \varepsilon$ тo interleave．Ta ypnyopa XT ω－
 үрךүopa AT ка। ol 80386 uполоүเбтєя $\mu \varepsilon$ interleave 1：2．

$\triangle \mathrm{IAX} \Omega \mathrm{PI} \Sigma \mathrm{MO} \Sigma \mathrm{KAI}$ FORMAT TOY $\triangle \mathrm{I} \Sigma \mathrm{KOY}$

О ठıахшрıбноя тои ठıбкои каı η б η－ μ וоирүіа $\lambda о ү$ ıк ω v drives ta omoia avia－ покріvovial бтך ठоиך пои вхєтє єпілє－ $\xi \varepsilon ⿺, ~ \beta \varepsilon \lambda \tau і \sigma t o m o i o u v ~ t o v ~ \chi p o v o ~ п р о \sigma п \varepsilon-~$入aбns tou．

Xpovos пробпвлабпऽ عıvaı о хро－
 щıа биүкєкрıцєvŋ періохп пои ßрıбкв－ таı апоӨпквицвvп бто ठıоко．

О хроvоя пробпглабŋऽ поเкьл入єו， ava入оүа $\mu \varepsilon$ т η v тахитпта пои $\eta к \varepsilon \varphi а \lambda \eta$ हүүpapns／avaүv $\omega \sigma \eta \varsigma ~ \mu \varepsilon т а к ı v \varepsilon ı т а ı ~ \mu \varepsilon-~$ таदु $\tau \omega \mathrm{V} \pi \varepsilon \rho ı 0 \chi \omega \mathrm{~V}$ тоu ठıбкоu．$\Delta ı a \chi \omega$－
 piopiбहтє т η v anootaon otnv onoia θ a

 oŋऽ өa عıval μ ккротєроऽ．
 поьо вІठтко проүрациа хшрібнои parti－ tions，μ ाоре
 $\mu а т а, ~ т о ~ \varepsilon v a ~ а п о ~ т а ~ о п о ו а ~ ө а ~ к а т а \lambda а \mu-~$

ТопоӨєтПбтє єкєा та архعia $\delta \varepsilon \delta о \mu \varepsilon$－ vんv каı та проүраниата пои хрпб！но－

 chiving архвıа каөшц каı үıа проүрац－
 taı σ maviotepa．

Ме тоv тропо аuто хрпбюопоוвıтаı ε va μ оvo т $\mu \eta \mu$ тои ठıбкои каı हтбו，η
 μ ікр η періох $\eta, \mu \varepsilon ו \omega v o v t a s ~ t o v ~ \chi p o v o ~$ пробпвлабクя．

TEAIKE Σ PY $\operatorname{TMI\Sigma EI\Sigma ~}$

Kavovtas λ omov o λ a ta mapanava甲tavete бto te入ıko otaסıo．Eठ ω to μ оvo

 σ oic partitions nou $\chi \omega$ pıбare．Σ in ouve－

 пара по λ u．
$\overline{\text { Avva Apyupotiounou }}$

ЕГК YPA BIBALA пOIOTHTAE゙ ETHN пNHPooopIK

Xo．Koídı－H QuickBASIC KAI OI EФAPMOГE $\operatorname{TH\Sigma }$

 каı $\lambda \varepsilon \iota \tau о v \varrho \gamma i \alpha$ тทs QuickBASIC．Пعŋıє́xo－ $v \tau \alpha \iota$ ol $\delta \iota \alpha \varphi \circ \varrho \varepsilon ́ s ~ \mu \varepsilon \tau \eta v$ BASICA，$\tau \alpha$ v ε ќ

 xаı SELECT．．CASE，vлол＠оү＠$\alpha \mu \alpha \tau \alpha$

－．Гx＠iŗanท

 AГФAAEIA ПАHPOФOPIAK』N EYETHMATRNТо $\beta \iota \beta \lambda i o ~ \alpha v \tau o ́ ~ \varepsilon i v a l ~ \mu о v a \delta \iota x o ́ ~ \sigma \tau \eta v ~ \varepsilon \lambda-~$
 $\mu \alpha \tau \alpha$ аб甲а́ $\lambda \varepsilon \iota \alpha \varsigma ~ \tau \omega v \pi \lambda \eta \varrho о \varphi о \varrho \iota \omega ́ v$ ка८

 $\alpha v \alpha \lambda v ́ \varepsilon \tau \alpha \iota ~ \eta ~ \delta \varrho \alpha ́ \sigma \eta ~ \tau \omega v ~ \pi \varrho о ү \varrho \alpha \mu \mu \alpha ́ \tau \omega v-~$
 aлó avtov́s．

H ГA』£ A COBOL KAI OI EФAPMOFE THェ

TEYXOE I．Mégos A：H $\theta \varepsilon \omega \varrho i ́ \alpha$ tŋs

 то одоклпюшнє́vo л＠о́үюа $\mu \mu \alpha$ ，а＠хві́ α ，лі－ vaxes，sort／merge，عxסóбєıऽ Microsoft， Microfocus，RM，ANSI－85）．Mépos B： 25

TEYXOE II．Mé＠os $\Gamma:$ Avártvȩ̃ xal
 в ξ б́ $\delta \omega v$ ．Парартท́ $\mu \alpha \tau \alpha$ ：то＠єлєрто́рьо кац
 COBOL．

$$
\text { - Tuŕr } 1900 \text { ס仓x. }
$$

 ミXEAIALH ME TH BOHOEIA YIIOAOTIETH－CAD． TO EYETHMA PC－DOGS

To $\beta \iota \beta \lambda i o ~ \alpha v \tau o ́ ~ \mu \varepsilon \tau \alpha ́ \alpha ~ \alpha \tau o ́ ~ \mu ı \alpha ~ \varepsilon к \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta ~ \varepsilon \iota \sigma \alpha \gamma \omega \gamma ท ́ ~ \sigma \tau о ~ C A D, ~$
 бv́oт $\eta \mu \alpha$ CAD PC－DOGS $\tau \eta$ PAFEC，$\pi 0 v$

Xо．Kоі́дı－II．इıбпоо́лоvдоv， CLIPPER：ӨERPIA KAI IIPAEH

 $\mu \alpha ́ \theta \varepsilon \tau \varepsilon ~ \gamma \iota \alpha ~$ тov Clipper zal $\tau \iota \zeta$ вча＠иоүย́ऽ
 $\mu \alpha \tau \iota \sigma \mu \circ v ́, \pi \lambda \eta \dot{\theta}$ оऽ $\pi \alpha \varrho \alpha \delta \varepsilon i \gamma \mu \alpha \tau \alpha$ к $\alpha \iota$

 $\mu \varepsilon \delta \iota \sigma x \varepsilon ́ \tau \alpha \mu \varepsilon$ on line manual ó $\lambda \omega v \tau \omega v$

－$\Sigma \varepsilon \lambda .336$ •T μ ท́ 3.500 dex．

$\Sigma \pi$ ．Zav日⿱́xŋn，PROLOG TEXNIKE П ПРОГРАMMATILMOY

 $\mu \varepsilon ́ v o ~ a \tau o ́ ~ \varepsilon \iota \delta \iota x o ́ . ~ A v a \pi t \tau v ́ \sigma \sigma o v t \alpha \iota ~ o l ~ เ \delta ı \alpha i-~$

 $\tau \omega v \gamma \lambda \omega \sigma \sigma \dot{\omega} v$ tov $\mu \varepsilon ́ \lambda \lambda \lambda \sigma \tau \tau \circ$ ．Пعрь $\lambda \alpha \mu \beta \dot{\alpha}-$ vovtal $\pi \alpha \varrho \alpha ~ \pi о \lambda \lambda \alpha \dot{\alpha} \sigma \chi \delta \delta \alpha \gamma \varrho \alpha \mu \mu \alpha \tau \alpha$ каь $\pi \alpha \varrho \alpha \delta \varepsilon i \gamma \mu \alpha \tau \alpha$ ．Екठóбєıऽ тทร Prolog： Turbo，Arity，AAIS xal Δ－Prolog．
－$\Sigma \varepsilon \lambda . ~ 328 \bullet$ Тนท́ 2.900 ठอх．

Хо．Коілıа－K．Za．oyıavvóxŋ，

MS－DOS V．4．0 OДHГOE XPHETH

 óles tıs evtohés tทs éxסoons avtท́s，ava－

 DEBUG，$\tau \alpha$ batch files，tıs $\delta v v a \tau o ́ t \eta \tau \varepsilon \varsigma$ avaxatev́धuvons，tovs סıáqo＠ovs drivers
 $\chi . \alpha$ ．
－$\Sigma \varepsilon \lambda .312$ •Tนท́r 1900 dex．

TO EГXEIPIAIO TH乏 GWBASIC－ －IIEPMHNEYTH乏

To $\beta \iota \beta \lambda i o ~ \alpha v \tau o ́ ~ \pi \varepsilon \varrho ı \lambda \alpha \mu \beta \alpha ́ v \varepsilon \iota ~ o ́ \lambda \varepsilon \varsigma ~ \tau \iota ร ~$ ยvto入és tŋラ GW－BASIC．Па＠éxovtaı η

 $\pi \alpha \varrho \alpha \delta \varepsilon i \gamma \mu \alpha \tau \alpha$ ．$\Sigma v \mu \pi \varepsilon \varrho \iota \lambda \alpha \mu \beta \alpha \dot{v \varepsilon \tau \alpha \iota ~ \varepsilon к \tau \varepsilon-~}$ $\tau \alpha \mu \varepsilon ́ v \eta ~ \varepsilon \iota \sigma \alpha \gamma \omega \gamma \eta ́ ~ \sigma \tau \eta ~ \gamma \lambda \omega \dot{\sigma} \sigma \alpha$ ，бтоv т＠ó－

－$\Sigma \varepsilon \lambda .340$ • Tци́ 1900 ס $\varrho \chi$ ． －$\Sigma \varepsilon \lambda i \delta \varepsilon \varsigma 232$ • T $\mu \eta$ ท́ 1900.

EKIOLEIL NFQN TEXNOAOIION

11ј． $6726+17$－ 6479077

MEXPI Σ HMEPA EXOYME A $\Sigma X O \wedge H$ HEI APKETE Σ ФOPE Σ ME TII MEӨО $\triangle O Y \Sigma ~ Г Р А Ф I K H \Sigma ~ А П E I K O N I \Sigma H \Sigma ~ X P H \Sigma I M \Omega N ~$ $\Sigma T O I X E I \Omega N ~ \Sigma T O N ~ 6128 . ~ \Sigma ' ~ A Y T O ~ T O ~ A P O P O ~ \triangle I N O Y M E ~ N E A ~$ $\triangle I A \Sigma T A \Sigma H \Sigma T O$ ӨEMA MA \sqcap ПAPOY $\Sigma I A Z O N T A \Sigma$ THN TPI $\Sigma \triangle I A \Sigma T A T H O \Psi H ~ T O Y . ~$

Iε пропүоицвvо твиХоऽ вıХаиє $\delta \varepsilon ı \mu \varepsilon$ ріка апла ал入а $\varepsilon \xi$ аıре－ тіка бібактіка проүраниата бпиіоupyias үpa甲ik ω п пара－ otage ω V tumou BAR CHART． Tо т $\varepsilon \lambda ı к о$ апот $\varepsilon \lambda \varepsilon \sigma \mu a$ η таv
 бицперічора ठио $\mu \varepsilon \tau а \beta \lambda \eta \tau \omega v$ биүхро－ vwc．Eivai סuvato va $\delta \eta \mu i o u p \gamma \eta \sigma o u \mu \varepsilon$

 $\rho a ~ \tau \rho ı \omega V \mu \varepsilon \tau a \beta \lambda \eta \tau \omega$ ；

To проүра μ а 3D BAR CHART поu

 $\mu \varepsilon เ \omega v o u \mu \varepsilon$ оті ठєv проквıтаı үıа＂праү－

 عival texvŋto．

10 REM
20 CLS
30 MODE 1：INK 0，13：INK 1，0：INK 2，9：
INK 3,15
40 REM BACKGROUND
50 GRAPHICS PEN 1
$60 \mathrm{X}=460: \mathrm{XL}=40: \mathrm{XR}=639$
70 MOVE X，400
80 DRAW X， 160
90 MOVE XL， 340
100 DRAW XL， 100
110 MOVE XR，340
120 DRAW XR， 100
$130 \mathrm{~A}=1000$
140 RW＝4
$150 \mathrm{C} \$=$＂ E^{\prime}
160 FOR $Y=400$ TO 60 STEP－（160／6）
170 MOVE X，Y
180 MASK 16

240 A＝A－250 250 RW＝RW＋3．7
260 GOTO 280
270 C\＄＝＂E＂
280 MOVE X，Y
290 DRAW XR，Y－60
300 NEXT Y
310 MOVE 40，100
320 DRAW 220，40
330 DRAW 639，100
340 MASK 255
350 LOCATE 17，23：PRINT＂1970＂；
360 LOCATE 26，22：PRINT＂1975＂；
370 LOCATE 35，21：PRINT＂1980＂；
$380 \mathrm{H}=40: \mathrm{C}=0$
390 XL＝80
$400 \mathrm{YL}=100$
$410 \mathrm{XS}=240$
$420 \mathrm{MR}=-50 / 210$
$430 \mathrm{ML}=15 / 89$
$440 \mathrm{~F}=3: \mathrm{O}=2$
$450 \mathrm{H}=100$
460 REM BLOCS
470 GRAPHICS PEN F
480 FOR X＝XS TO XS +20
490 MOVE X，20

500 DRAW X，1

190 DRAW XL，Y－60
200 IF C $\$=$＝O＂THEN 270
210 LOCATE 2，RW
220 PRINT A；
$230 \mathrm{C} \$=$＂ O ＂

510 NEXT X
515 LOCATE 5,25:PRINT "FRANCE"
516 LOCATE 21,25:PRINT " W
GERMANY"
520 FOR J=1 TO 3
525 GET DATA
530 READ DA
540 TP = (240-DA)/900
550 GOSUB 680
560 GOSUB 980
570 XL=XL+146
580 YL=XL: \quad)
590 NEXT J
$600 \mathrm{C}=\mathrm{C}+1$
605 LOCATE 1,1
610 IF C=2 THEN END
$620 \mathrm{~L}=182$
$630 \mathrm{YL}=75$
$640 \mathrm{~F}=2$
$650 \mathrm{O}=3$
660 XS $=540$
670 GOTO 460
680 REM FILL BOX
690 BL=YL+TP-ML-XL
$700 \mathrm{BR}=\mathrm{YL}-\mathrm{MR}-\mathrm{XL}$
710 FOR X $=X L$ TO XL $+\mathrm{H} / 2$
$720 \mathrm{Y} 1=\mathrm{ML}-\mathrm{X}+\mathrm{BL}$
730 Y2=MR-X+BR
740 GRAPHICS PEN F

750 MOVE $X, Y 1$
760 DRAW X,Y2
770 GRAPHICS PEN 1
780 PLOT X,Y1
790 PLOT X,Y2
800 NEXT X
$810 \mathrm{YT}=\mathrm{Y} 1$
$820 \mathrm{YB}=\mathrm{Y} 2$
$830 \mathrm{BL}=\mathrm{Y} 3-\mathrm{ML}-(\mathrm{XL}+\mathrm{H} / 2)$
840 BR $=$ YT-MR- $(X L+H / 2)$
850 FOR X $=X L$ TO XL $+H / 2$
860 Y1 $=M R-X+B R$
870 Y $2=M L-X+B L$
880 GRAPHICS PEN F
890 MOVE X,Y1
900 DRAW X,Y2
910 GRAPHICS PEN 1
920 PLOT X,Y1
930 PLOT X,Y2
940 NEXT X
$950 \mathrm{YR}=\mathrm{Y} 2$
960 RETURN
970 OUTLINE
980 MOVE XL, YL
990 GRAPHICS PEN 1
1000 DRAW XL,YL+TP
1010 MOVE XL+H/2,YB
1020 DRAW XL+H/2,YB+TP
1030 MOVE XL+H,YR

1040 DRAW XL+H,YR+TP 1050 MOVE XL+H/2,YB+TP 1060 DRAW XL+H,YR+TP 1070 MOVE XL,YL+TP
1080 DRAW XL $+\mathrm{H} / 2, \mathrm{YR}+$ TP-(6-(H/80)) 1090 RETURN
1100 DATA $500,500,750,250,500,750$
То парапаvш проүраниа апотвлєו-
tal апо та $\varepsilon \xi \eta \varsigma ~ \tau \mu \eta \mu а т а: ~$
10-50: Прокатарктккєऽ عрүабเєऽ
60-340: Xapa η плаıбьо

460-516: K $\omega \delta$ ıkot Xp $\omega \mu a t \omega v$
520-670: Kupiws poutiva

970-1090: Періүрациа μ парая
1000: Data
 $\psi \circ \varsigma$ tns μ mapas, ol poutives $\tau \omega \vee$ үpa μ $\mu \omega v 680$ ка। 970 ठ $\eta \mu$ loupyouv to перा-

Oı нпарея пои ßрібкоитаı проц та
 пои ßpiбкоvтаі $\mu п р о \sigma т а, ~ \mu \varepsilon ~ а п о т \varepsilon л \varepsilon-~$
 үvшoto oav "hidden surface".

Гішрyos Kотбірая

M.B. COMPUTER

NIKAIA
ГPEBEN 2 N
THム. 4921600

CE 0808-CS 2616 CS 3616

ПРОГФОРА
VEGAS VS 20C ME 20 MB $\triangle \mathrm{I}$ KKO ТІМН ЕКПАНЕН!!!
${ }^{\circ}$ S Schneider
EUROPC II EUROXT TOWER AT
 च"

AMIGA '500

ЕКТҮПЛТЕЕ FAX
ГKАHPOI АİKOI
SIEKETEL
SILKETOOHKEL
BIBAIA
ФI Λ TPA
KAAYMMATA

ЕПАГГЕАМАТІКА ПРОГРАММАТА EІІІКА ГІА

- BIOTEXNE ENAYIE Ω, ҮПOAYEE $\Omega \Sigma$

- ОРГАN Ω ГН ГРАФЕІІ
- КОГІटTIK
- KATALKEYALTQN AAOYMINIOY

E

D\square IIA TON

ST

Mпореı va umapxouv Utilities mou xpnothomolouvtal oav
 по тоия проүрациатьтєя ка। tous Xpクotes，аконŋ umap－ Xouv editors nou μ mopou μ va $\varepsilon п \varepsilon \mu \beta о и \mu \varepsilon$ ка। va тропопоіпбоицє ал－
 Av $\theta \varepsilon \lambda о u \mu \varepsilon$ va $\varepsilon \xi \varepsilon \lambda \lambda \eta v i \sigma o u \mu \varepsilon \varepsilon v a$ menu $\sigma \varepsilon$ капоเо दєvoү $\omega \sigma \sigma \circ \cdot \pi \rho о ү р а \mu-$ $\mu a ~ п р \varepsilon п \varepsilon ı ~ v a ~ k a v o u \mu \varepsilon ~ т i ৎ ~ \delta เ о р \theta \omega \sigma \varepsilon ı ৎ ~$

 סuvos va kavouнe opөoүpapika $\lambda a \theta \eta$
入aӨоия μ ая то $\beta \lambda \varepsilon п о ч \mu \varepsilon ~ п о \lambda и ~ а р ү о т \varepsilon-~$ pa otav ε хоицє чортшбє। то проүрац－ $\mu \mathrm{a}$ ．

FILE EDITOR

Гіа va плпктролоүпоєтє то парака－ $\tau \omega$ listing препєi va чортんбєтє in ү $\lambda \omega \sigma \sigma a$ ST BASIC．Oпんऽ $\xi \varepsilon \rho \varepsilon \tau \varepsilon$ uпар－ Xouv $\eta \bar{\eta} \eta$ ठuo versions．H ma入ala version
 1985 kal η kaivoupyıa eival autn tou 1987．То проүраниа тргхєı є६ıбои кала kal бtiç סuo versions．

To проүраниа عıvaı عvas file editor пои нпореı va бац чаveı поллапла

 apxعı va $\varepsilon \xi \varepsilon \lambda \lambda \eta v i \sigma \varepsilon t \varepsilon$ eva pull down
 Yпархой каı алла utilities пои μ по－

 file editor．Гıa va $\mu \pi 0 \rho \varepsilon \sigma \varepsilon \tau \varepsilon$ va трє६єtє auto to проүра $\mu \mu$ а $\mu \varepsilon т а ~ т \eta \nu ~ п \lambda п к т р о-~-~$入оүnon tou $\sigma \omega \sigma$ т to $\mu \varepsilon$ опоוо оvo μ a
 BASIC．Mnopeı va tpع $\varepsilon \varepsilon$ 位 high ń me－ dium resolution．

H ठıaסıkaбıa пои трехعтє то про－

 oӨovn oas eva block $\mu \varepsilon$ रहӨous 64 bytes．To block auto $\varepsilon \mu \varphi$ aviそहı $\pi \lambda \eta \rho \circ-$
 kal σ Tov k $\omega \delta$ เка ASCII．

Мпорєітє va прохшрךбєтє ото єпо－ $\mu \varepsilon$ vo block，va عпाбтрє $\psi \varepsilon \tau \varepsilon$ бто про you μ vo，va a入入aそєt капоเo byte ń $\mu \varepsilon$ тๆ้ $\varepsilon \vee \delta \varepsilon เ \xi \eta ~ q u i t ~ v a ~ \varphi u ү \varepsilon т \varepsilon ~ а п о ~ т о ~ п р о-~$
 прєпєı va патпоєтє то＂E＂каı $\mu \varepsilon \tau а$ то return．
 прєпєı va патпоєтє то үрациа＂П＂ка। катопіv то return．Av єпі入є६єтє то үра $\mu-$

 поıо byte $Ө$ a $a \lambda \lambda a \xi \varepsilon \tau \varepsilon$ каı $a \mu \varepsilon \sigma \omega \varsigma \mu \varepsilon$－
 тип пои проквıтаı va ठ $\omega \sigma \varepsilon \tau \varepsilon$ ．Av η ठои－
 үраниа＂Q＂kal тотє Өа 甲иүعтв апо то
 BASIC．

COMPUTER \＆SOFTWARE／IOYNIOE 1990

ТРОПОПОІНГЕІГ

То проүра μ а єпठвхєтаі по $\lambda \lambda \varepsilon \varsigma$ тропопоוповıৎ ava入оүа $\mu \varepsilon$ тіৎ ठІкєऽ
 a入入a乡हт ε то block $\tau \omega v 64$ bytes mou
 μ пореітє va тропопоіПоєтє тіৎ үрац－ $\mu \varepsilon \varsigma$ проүки $\mu \mu$ атоц 280 ка। $320 . \Delta \eta \lambda a \delta \eta$
 ano to $1 \mu \varepsilon$ хрı kat to 16 kat σ тך үpa $\mu \mu \eta$ 320 то i\％паıрveı тінгऽ aпо то $1 \mu \varepsilon \times$ ры kal to 16，тот $\mathrm{ka} \mathrm{\theta} \mathrm{\varepsilon} \varphi \circ \rho \mathrm{o}$ бтทv oөov бas Өa عरहtє عva block 256 bytes（16－ 16＝256）．Тот о $\mu \omega \varsigma ~ п р \varepsilon п \varepsilon ı ~ v a ~ a \lambda \lambda a \xi \varepsilon \tau \varepsilon ~$ т $\eta v \varepsilon \mu \varphi a v i \sigma \eta$ тŋऽ $0 \ominus 0 v \eta \varsigma$ үıa va $\mu \eta v$ тu－
 бтоv a入入o．Прєпєı va a入入аदєтє үıa па－ рабєіүиа тп үра $\mu \mu \eta$ проүрациатоя 430．H үра $\mu \mu \eta 330 \delta \eta \lambda \omega$ veı otov cursor

 t ω V＂Y＂．Av autף η हvto $\lambda \eta$ ठıa

 זทৎ ST BASIC $\varepsilon v \omega$ otiv палaıa apvon－ $\sigma \tau \varepsilon \tau \eta$ ．

OI OE EEI Σ TOY ПАНКТРОАОГІОҮ

Отаv плпктролоүпбєтє то парака－
 т $\eta \mathrm{V}$ ST BASIC，тот ε Өa $\varepsilon \mu \varphi$ аvioteı η ОӨ०－ v η Output ins ST BASIC．Пatwvias onol－
 Өоvn бas to үpapرа tou avtiotoixou плпктрои пои патпбатв，η ти η тои бтои кшठıка ASCII каı η Өعбך tou бто пл η－

 ктпрєя）．Гіа парабвıүна аv патпоєтє то үра $\mu \mu \mathrm{a}$＂h＂θ а $\delta \varepsilon І \tau:$

Плпктро： h
ASCII： 104
Өєбп ПлПктролоүıои：35

 ठદાtદ：

ПАПктро：η
ASCII： 158
Өєбף П入Пктро入оүıои： 35

30	rem 「İ̈́vvns Ntóvtopos
50	GOSUB filenane
60	GOSUB dump
70	GOSUB options
80	IF INSTR（＂EsllnAa＂，opt\＄）
	THEN GOTO 60
90	END
100	
110	filename：
120	FULLW 2：CLEARW 2
130	GOTOXY 0，1
140	DIR：＇Móvor yia tnv
	kaivoujpyia ST BASIC
	Version（1987）
150	PRINT
160	INPUT＂П0io eival
	T0 Apxeio：＂；FILE\＄
170	OPEN＂R＂，\＃1，FILES，1
180	FIELD \＃1，1 AS buffer\＄
190	ptr\％$=1$
200	RETURN
210	
220	dump：
230	CLEARW 2
240	GOTOXY 2.1
250	PRINT＂Apxeio：＂；file\＄： ＂Mñkos：＂；LOF（1）：＂bytes＂
260	PRINT
270	PRINT＂＿Dec
	Hex Ascil

30 rem＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
40 FULLW $2: A \# G B$
CONTROL＝PEEK（A\＃）：
GLOBAL $=$ PEEK $(A \#+4)$ ：
GINTIN $=\operatorname{PEEK}(A \#+8)$
50 GINTOUT＝PEEK $(A \#+12)$ ：
ADDRIN $=$ PEEK $(A \#+16)$ ：
ADDROUT $=\operatorname{PEEK}(A \#+20)$
CLEARW 2

```
FOR j%=1 TO 8
a$=""
GOTOXY 1.3+j%
print ptr%-1;TAB(7);"
FOR i%=1 TO 8
If ptr%<LOF(1) THEN GET #1,
ptr%:b%=ASC(buffer$)
If b%>31 AND b%<255 THEN
a$=a$+CHR$(b%) ELSE a$=a$+"."
PRINT RIGHT$("0"+HEX$(b%) ,2);" ";
ptr%=ptr%+1
NEXT
PRINT " ";A$
NEXT
RETURN
options:
GOTOXY 1,12
input "Enóu\varepsilonvo. Mponyoúucvo,
A\lambda\lambdaaynे,nं Quit (E/\Pi/A/Q)";opt$
IF INSTR("חn",opt$) THEN
ptr%=ptr%-64+64*(ptr%>255)
IF INSTR("E\varepsilonTnQq"opt$) THEN RETURN
INPUT "ПO1ó byte d\lambda\lambdaá\zeta̧|\varsigma:";n%
INPUT "Nea тluri";a$
b%=VAL(a$)
LSET buffer$=CHR$(b%)
PUT #1,n%+1
ptr%=ptr%-64
RETURN
```

File Editor
60 GEMSYS（20）
K＝PEEK（GINTOUT）：
SCAN＝（K AND 65280）／256
70 ASK＝K AND 255
PRINT＂Плท⿱亠幺тро：＂CHR\＄（ASK），
＂＊ASCII：＂ASK，
＂＊Өغ்ण ПАПктр／yiou：＂SCAN
80 IF SCAN $=1$ THEN PRINT＂TE \wedge O Σ＂：
FOR $D=0$ TO 500 ：
NEXT D ：END ELSE GOTO 30

Проүрациа каӨорібнои Өвбךऽ плпктршv

OпWৎ ката入аßaıvetع autn to utility
 tov mapamavo file editor．Гia va үuүعтє апо то проүра μ а патпотє то плпктро

тип тои кшбוка ASCll каı in $\theta \varepsilon \sigma \eta$ tou бто плпктро入оүıо Өа єпוбтрє $\psi \varepsilon \tau \varepsilon \sigma т \eta \vee$ ST BASIC．

「iavvnc Nitovtopoc

11apainpw－ vias to $\pi \varepsilon$－ pißai入ov yupw oas өa $\varepsilon \chi \varepsilon \tau \varepsilon$ ठıaпıбт $\omega \sigma$ ィ оті т $\mu \eta \mu$ ата по $\lambda \lambda \omega v$ avtikeı $\mu \varepsilon v \omega v$ криßо－ vtai aпо алла аvtiкel－ $\mu \varepsilon v a$ ta опоіа ßpiбко－

 лацßаvetal то $\chi \omega p$ оаи трıбठıaбтатп u－
 роия параүоитєऽ，опиаитікотєроৎ т $\omega \vee$ о－ поюшv हival auto пои оvоца弓оицє＂проо－ птккク＂．

Eико入a 入oinov үivetal avti入ŋпto oti

 ठио парапаvш рaivo $\mu \varepsilon v \omega v$ ．Xрعıа弓єтаı入oımov va oxeठıaбtouv हוסıкеऽ pouti－ veऽ ol опоเєऽ va ठ $\eta \mu$ ioupyouv ta mapa－
 щוоирүіа हVOS рعаліотікотврои апотв－
 vtat бта проүрациата пои бая ठıvou－
 по auta：

10 REM

20 REM PROGRAM 1
25 REM HIDDEN SURFACE NO 1
30 REM
40 SCREEN 2
45 CLS
50 GOSUB 1000
$60 \mathrm{H}=35: \mathrm{D}=75$
$65 \mathrm{TH}=.8: \mathrm{PH}=1$
70 S1＝SIN（TH）：C1＝COS（TH）
$80 \mathrm{~S} 2=\mathrm{SIN}(\mathrm{PH}): \mathrm{C} 2=\mathrm{COS}(\mathrm{PH})$
90 REM
100 REM DRAW PYRAMID
110 REM
$120 \mathrm{~N}=6$
125 GOSUB 460
130 REM
140 REM HIDDEN SURFACE
150 REM
160 READ X，Y，Z
170 GOSUB 560
$180 \mathrm{X} 1=\mathrm{SX}$
190 Y $1=S Y$
$200 \mathrm{X} 1=\operatorname{PMAP}(S X, 0)$
210 Y $1=$ PMAP（SY，1）
220 READ X，Y，Z
230 GOSUB 560
240 X2＝SX
$250 \mathrm{Y} 2=\mathrm{SY}$

זРАРIKA ETON PC

 AYTON TO MHNA ПРОХ Ω POYME $\Sigma T H N$ ПАРОҮЕIA乏H ПРОГРАММАТ Ω K KAI TEXNIK Ω N ПOY XPH Σ IMEYOYN Σ TH £ XE $\triangle I A \Sigma H ~ Г E \Omega M E T P I K \Omega N$ ミXHMAT Ω N．260 X2 $2=\operatorname{PMAP}(S X, 0)$
270 Y2＝PMAP（SY，1）
$280 \mathrm{SL}=(\mathrm{Y} 1-\mathrm{Y} 2) /(\mathrm{X} 1-\mathrm{X} 2)$
290 WINDOW
300 FOR XP＝X1 TO X2
310 YP＝SL－（XP－X1）＋Y1
$320 \operatorname{LINE}(X P, Y P)-(X P, 180), 0$
330 NEXT XP
340 WINDOW $(-3,-7)-(5,4)$
350 REM
360 REM DRAW CUBE
370 REM
$380 \mathrm{~N}=11$
390 GOSUB 460
395 END
420 END
430 REM
440 REM DRAWING SUBROUTINE
450 REM
460 FOR I＝1 TO N
470 READ X, Y, Z
480 GOSUB 560
490 IF I $=1$ THEN PSET（SX，SY）， 1
500 LINE－（SX，SY）
510 NEXT I
520 RETURN
530 REM
540 REM PERSPECTIVE SUBROUTINE 550 REM
$560 \mathrm{XE}=-\mathrm{X}-\mathrm{S} 1+\mathrm{Y}-\mathrm{C} 1$
570 YE＝－X－C1－C2－Y－S1－C2＋Z－S2
580 ZE＝－X－S2－C1－Y－S2－S1－Z－C2＋H
590 SX＝D－XE／ZE：SY＝D－YE／ZE
600 RETURN
610 REM
620 REM PYRAMID DATA
630 REM
640 DATA $-1,-1,-2,-2,-2,-1,-2,-1,-2$
650 DATA $-1,-1,-2,-1,-2,-2,-2,-2,-1$
660 REM

670 REM CUBE DATA

 680 REM690 DATA $1,1.5,1,0,1.5,1,0,2.5,1$
700 DATA $1,2.5,1,1,2.5,0,0,2.5,0$
710 DATA $0,2.5,1,0,1.5,1,1,1.5,1$
720 DATA $1,1.5,0,1,2.5,0,1,2.5,1$
730 DATA 1，1．5，1
1000 REM
1010 REM WINDOW
1020 REM
1030 KEY OFF
1050 WINDOW $(-3,-7)-(5,4)$
1060 LINE（ $-3,-7$ ）－（ 5,4$)$ ，， ，
1100 RETURN
Tрعхоvias to парапаиш проүран－

 ठио үєшнєтріка $\sigma \chi \eta \mu$ ата та опола β рі－ okovtal to eva пıб капоเо $\mu \varepsilon \rho о$ тои＂＂акритврои＂ка入и－ птвта। апо عva ти $\eta \mu$ а тои＂коутіvотв－ pou＂．Ot кupiotepȩ poutives поu перiع－
 ६ทऽ：

HIDDEN SURFACE（140－340）：$\Delta \eta \mu$ ioup－
 mavaoxeठiaそovtas $\mu \varepsilon$ то хрю μ а tou poviou ekeiva ta tu $\mu \mu$ ata tou ε vos бхпиатоৎ пои калuпtovial ano to a入－ λ ㅇ．

DRAWING SUBROUTINE（440－520）：El－ vaı μ Ia үहvikク poutiva oxeठıaaņ nou
 $\sigma \chi \eta \mu a t a$ пои аvaрграцє парапаvа， храбıнопоו ω vias ta DATA пои ßрıбко－ vtaı σ tic үрациعऽ 640－650 kaı 690－730．

PERSPECTIVE：H poutiva autn $\delta \eta$－

 потєлєб μ ．

То впоивуо проүрациа пои оац ठь－

 tou прштоu va φ aıvovial $\mu \varepsilon \sigma$ а aпо au－

 чора $\mu \varepsilon$ то хрю μ а 3 каı μ а фора $\mu \varepsilon$ то $\chi \rho \omega \mu \alpha 0$ тоu φ оvtou，ε тоt $\omega \sigma$ т ε va $\sigma \beta \eta$－ бtouv ot үраниея tou бхпиатоя пои Bpıбкоvtaı апо пıбш．इпиعı ω vou $\mu \varepsilon$ отı

 каı va $\mu \eta$ v гцпобıбтєı апо тıৎ үрацигৎ

10 REM

20 REM PROGRAM 2
25 REM HIDDEN SURFACE NO 2 30 REM
40 SCREEN 1,0
42 COLOR 0，1
45 CLS
50 GOSUB 1000
$60 \mathrm{H}=35$ ：D＝75
$65 \mathrm{TH}=8: \mathrm{PH}=$
$70 \mathrm{~S} 1=\mathrm{SIN}(\mathrm{TH}): \mathrm{C} 1=\mathrm{COS}(\mathrm{TH})$
$80 \mathrm{~S} 2=\mathrm{SIN}(\mathrm{PH}): \mathrm{C} 2=\mathrm{COS}(\mathrm{PH})$
90 REM
100 REM DRAW PYRAMID
110 REM
$120 \mathrm{~N}=6$
$122 \mathrm{C}=3$
125 GOSUB 460
350 REM
360 REM DRAW CUBE
370 REM
$380 \mathrm{~N}=11$
$385 \mathrm{C}=2$
390 GOSUB 460
391 REM
392 REM PAINT CUBE
393 REM
394 FOR I＝1 TO 3
395 READ X，Y，Z：GOSUB 560
396 PAINT（SX，SY），3，2
397 PAINT（SX，SY），0，2
398 NEXT I

400 REM
402 REM DRAW CUBE NEW COLOR
404 REM
405 RESTORE 690
$406 \mathrm{~N}=11: \mathrm{C}=3$
408 GOSUB 460
410 END
430 REM
440 REM DRAWING SUBROUTINE 450 REM
460 FOR I $=1$ TO N
470 READ X，Y，Z
480 GOSUB 560
490 IF I＝1 THEN PSET（SX，SY），C
500 LINE－（SX，SY），C
510 NEXT I
520 RETURN
530 REM
540 REM PERSPECTIVE SUBROUTINE 550 REM
560 XE＝－X－S1 $+Y-C 1$
570 YE＝－X－C1－C2－Y－S1－C2＋Z－S2
$580 \mathrm{ZE}=-\mathrm{X}-\mathrm{S} 2-\mathrm{C} 1-\mathrm{Y}-\mathrm{S} 2-\mathrm{S} 1-\mathrm{Z}-\mathrm{C} 2+\mathrm{H}$
590 SX＝D－XE／ZE：SY＝D－YE／ZE
600 RETURN
610 REM
620 REM PYRAMID DATA
630 REM
640 DATA $-1,-1,-2,-2,-2,-1,-2,-1,-2$
650 DATA $-1,-1,-2,-1,-2,-2,-2,-2,-1$
660 REM
670 REM CUBE DATA
680 REM
690 DATA $0,2.5,1,1,2.5,1,1,2.5,0$
700 DATA $0,2.5,0,0,2.5,1,0,1.5,1$
710 DATA $1,1.5,1,1,1.5,0,1,2.5,0$
720 DATA $1,2.5,1,1,1.5,1,5,2,1$
730 DATA ． $5,2.5,5,1,2,1$
1000 REM
1010 REM WINDOW
1020 REM
1030 KEY OFF
1050 WINDOW $(-3,-7)-(5,4)$
1060 LINE $(-3,-7)-(5,4)$ ，B
1100 RETURN
$\overline{\text { гішруос Котбıрас }}$
BIBAIOГРАФIA
－To $\beta \iota \beta \lambda 10$＂Microcomputer graphics for the IBM PC＂（Апоклеוотוкотпта yıa т ηv ह $\lambda \lambda \eta \nu i \kappa \eta$ y $\lambda \omega \sigma \sigma a: ~ Е к \delta о-~-~$ овіс $К \lambda \varepsilon ו \delta a \rho i \theta \mu \circ \varsigma)$
－періодıка вллдvıкои каı छєvou тu－ moи пака отоия Прооштıкоия Y－ modoyiotes
－To manual ṫc GW BASIC
－Biß入ia छとvou tumou mava otov I－ BM PC каו отоис оидßатоия $\mu \varepsilon$ autov umodoyiotes
－Палаוотєра тєихク тои періодıкои Computer Software

COMPUTER \＆SOFTWARE／IOYNIOE 1990

$40 \cdot 11.1$
 AREXX： O NEOI tPOMOI emikoinnnias

ENA AKOMH BHMA EMПPO乏 ГIA TI乏 ПPOГРAMMATIETIKE Σ इA乏 ANAГKE O $\Sigma Y N \triangle E T I K O \Sigma$ KPIKO乏 ПOY EЛEIIE AПO TO AMIGA DOS．

HAMIGA ε ival $ү v \omega \sigma i \eta ~ ү ı a ~ i \eta v$ סuvatointa ths va tpexé бuyxpovんs $\mu \mathrm{Ia}$ бعіра апо в－ чариоүєя，о үvшотоs ороя multitasking．Kai $\chi a p \eta$ σ tiৎ $\mu \varepsilon$－ $\lambda \varepsilon \tau \varepsilon \varsigma$ каı $\varepsilon р y a \sigma ı \varepsilon \varsigma ~ \delta ı a \varphi о р \omega v$
 μ וoupyia opio $\mu \varepsilon v \omega v$ otavtap format， пои єпєтрєпаv тๆv avта入入аүך $\delta \varepsilon \delta о \mu \varepsilon$－
 $\tau \omega v$ ．Гia парабعıүна то $\gamma v \omega \sigma$ то format
 Xouv $\delta \eta \mu$ ioupү η өा $\mu \varepsilon$ вva проүра $\mu \mu a$ va μ пороuv va $\varepsilon п \varepsilon \xi \varepsilon \rho ү a \sigma t o u v ~ k a l ~ \chi p \eta-~$
 $\mu \circ ү \varepsilon \varsigma$ хшрія провлппиа．
 $\theta \varepsilon ı$ апо $\varepsilon v a$ digitizer $\mu \pi \circ \rho \varepsilon ı$ va $\varepsilon п \varepsilon \xi \varepsilon \rho-~$
 тоऽ $\zeta \omega ү р а \varphi і к \eta \varsigma ~ к а І ~ \varepsilon п є ı т а ~ v a ~ \chi р \eta \sigma \mu о-~$
 үабтп квıиعvou．Та ठıачора проүрац－ ната ठعv ouvavtouv ठuбко入ıa otnv a－ vaүvшріб η каı μ ктатропך हvos тетоוои apxeiou．

Mexpl σ тiүpク̆ timota veo yia tous xpクotes tns AMIGA．Auto ouls rou пробияреı η ARexx вıvaı катı парапа－ $v \omega$ ．Evav otavtap tропо впıкоוv ω vias $\mu \varepsilon \tau а \xi \cup \delta \iota а \varphi о р \varepsilon т ו к \omega \vee ~ п р о ү р а \mu \mu а т \omega \vee ~ а-~$

 ta乡u tous ta проүрациата．Поıа عıvaı
 touv to прштотипо аuto عiठоऽ interface；

Baбika η ARexx ε ıval μ ia $y \lambda \omega \sigma \sigma a$ проурациатібнои，пои викола паро－

о $\mu \omega$ с прот $\varepsilon \eta \mu$ а عıvaı η हиколıа каı

 та апо каı проя та проүраниата．

Eпıкоוvavelte $\mu \varepsilon$ тпv ARexx xpnot－

 бعipa poutives mou ava入a $\mu \beta$ avouv inv

бє каполо mainframe бuбтпиa tnऽ IBM．
To ARexx $\delta \varepsilon v$ бПuaiveı тוпот ε a入入о
 AMIGA Kaı ठعv हivaı пapa $\varepsilon v a c ̧$ interpre－ ter ε тто $\lambda \omega$ у поu μ пороuv va бuvठua－弓Ouv tooo evto kal हvto入eৎ tou AMIGA DOS．Праүна

 tal $\xi \varepsilon \chi \omega \rho 1 \sigma$ to пहpıßa入入ov yıa va $\lambda \varepsilon$－ тоupүnoعı парa μ оvo to $\gamma v \omega \sigma$ то CLI．

 рєітє va ঠпиıоирүпоєтє проүрациата kal poutives $\sigma \varepsilon$ ARexx．$\Sigma \omega \zeta \varepsilon \tau \varepsilon \sigma \varepsilon \mu \circ \rho-$ $\varphi \eta$ ASCll кal ка入عıт tov interpreter．Ta ठıa甲ора apxعia μ тороuv va 甲u入а－

 pa ths $y \lambda \omega \sigma \sigma a \varsigma$ oav interpreter kal oxl oav compiler $\varepsilon \times \varepsilon$（ $\beta \varepsilon \beta$ aıa ta $\Pi \lambda \varepsilon о v \varepsilon к \tau \eta$－ μ ата ал入а каі та $\mu \varepsilon ו о v \varepsilon к т п \mu а т а ~ т о и . ~ E-~-~$ тб। $\sigma \varepsilon \sigma \chi \varepsilon \sigma \eta \mu \varepsilon$ a $\lambda \lambda \varepsilon \varsigma$ ү $\gamma \omega \sigma \sigma \varepsilon \varsigma$ عıval

 $\lambda \varepsilon \sigma \eta$ вvos проүрациатоц．Пєра оншऽ апо аuto ठıveı otov xpクotn o入a ta a－ параітпта врүалеіа үіа $\delta \eta \mu і о и р ү і а$

 p ωv кaı $\mu \varepsilon \tau a \beta \lambda \eta \tau \omega v$ oбo kal $\tau \eta v \delta \eta$－
 youv каты aпо бuүкєкрı μ हv η ठıаठıка－ бוа．Фuбіка паvia бє апо入итп бuцßа－ тотпта $\mu \varepsilon$ то AMIGA DOS．इuxva $\mu a \lambda_{\mathrm{l}}$－ ota ol हvtohes tns ARexx μ пाоpouv va паı६оuv то роло т $\omega \vee$ пара $\mu \varepsilon \tau р \omega \vee \sigma \varepsilon$

O入a auta $\delta \varepsilon v$ өa ε ıxav onuaoia av
 $\mu \varepsilon \sigma \eta \varsigma ~ п р о \sigma \beta a \sigma \eta \varsigma ~ \sigma т ц ৎ ~ \sigma и \sigma к \varepsilon и \varepsilon \varsigma ~ \varepsilon ו \sigma о-~$
 $\mu \varepsilon$ т ηv ठuvatornta avapvwpioņ $\kappa \omega \delta$－
 oxupa опла тŋs．

Ma入ıбта опНऽ $\lambda \varepsilon ү \varepsilon$ таı η हкठобп тои
 ARexx $\sigma \varepsilon \pi \lambda \eta \rho \eta \mu \circ \rho \varphi \eta$ каı uпобтПрі η ． Побо о $\mu \omega \varsigma$ праүнатікп каі вчар $о \sigma$ г
 vos tetolou поגитाцоu ßопөпнатоя апо tous xpクotes tクऽ AMIGA；H anavinon हıvai aı甲viठiaotika Өetikク．Kı auto yıati
 проүраниат ω к ка। $\varepsilon \varphi a \rho \mu о ү \omega$ н пои u－
 ка। ovoната опшく η Superbase Pro－ fessional，Superplan，Microfiche filer Plus． TxEd Plus，A－Talk III，DigiPaint II kaı Deluxe Video III．Гia ta mapanava Өa μ пороиб

 vias ठıаререı апо то हva проүраниа бто а入入о．

 aплоu kava入ıou $\mu \varepsilon$ ка $\xi \cup$ ү $\lambda \omega \sigma \sigma a \varsigma$ kal проүраниатоц．H ARexx $\sigma \tau \varepsilon \lambda v \varepsilon 1 \mu \eta v u-$ ната бто проүраниа каі аито апалта $\mu \varepsilon$ к ω ठاкоus пои $\varepsilon \rho \mu \eta v \varepsilon u o v t a l ~ a v a \lambda o-~$

$\Sigma \varepsilon$ пוо $\sigma u v \theta \varepsilon \tau \eta ~ п \varepsilon р і п т \omega \sigma \eta ~ т о ~ п р о-~$
 μ оvo tou $\mu \eta v \cup \mu a t a$ поu μ пореı va бт vع। тобо σ Inv ARexx обо kal $\sigma \varepsilon$ a $\lambda \lambda a$ проүрациата．Үпархвı аконп каı η би－

 ба олоклпрп．Мє алла лоүıа та про－

 ка бє каөє пєріпт $\omega \sigma \eta$ проүрацнатнv ol avaүкєऽ عıval ठıaبорєтıкєऽ．

Гıa то про $\lambda \lambda \eta$ а аuto η ARexx $\varepsilon \times \varepsilon$ ।
 kクऽ ve ω v ouvapino $\varepsilon \omega \mathrm{v}$ kal poutiv $\omega \mathrm{v}$ ．

 ava入оүך пहрıпт $\omega \sigma \eta$ ．Оı вчарноүعऽ каı

 практікп тпऽ бта каӨпиеріva проß入п－ ната вıvaı поли апоботікП каı в६оıко－

 Matiou ато то sequencer ото пеvta－

O入a auta μ mopouv va eival eva a－
 пои θ а हктєлоuvtal $\mu \varepsilon$ бعוра протв－
 Baбך тои xpクoin．$\Delta \eta \mu$ Ioupyos ins ARexx eıval o William S．Hawes $\mu \varepsilon$ tov o－
 סıعuӨuvon：P．O．Box 308，Maynard，Mas－ sachusetts 01754 U．S．A．

H ARexx $\delta \varepsilon v$ عivat μ Ia ако $\eta \eta$ ү $\lambda \omega \sigma$－

入єı०，прштотипо каı μ оvtepvo．Avtiotol－ $\chi \varepsilon \varsigma$ пробпаӨвıгऽ отоv тонва аито ठи－

 poūe va ठんб\＆ı катん amo eva eviaio $\pi \varepsilon р ı \beta a \lambda \lambda 0 v$ हva interface үpapıк ωv ，ani－
 $\varepsilon \lambda \varepsilon \gamma \chi \circ$ бuđi $\varepsilon u \omega v$ ठ $\delta \delta \circ \mu \varepsilon v \omega v$ ．
 va aıનөavovtai no入u tuxepol．EnnıZou－ $\mu \varepsilon$ бто $\mu \varepsilon \lambda \lambda$ оv оло каı періббот $\varepsilon \rho a$ проурациата va uпобтпрıदouv tnv u－
 $\sigma \mu \varepsilon v o l$.

Avt $\overline{\text { v } \eta \varsigma ~ B a \mu \beta a к a p \eta s ~}$

COMPUTER \＆SOFTWARE／IOYNIOE 1990

DRAGON＇S DREATH

HAnrea ε ival $\mu ı \alpha \quad \chi \omega \rho a \mu \varepsilon$ аркєта провлпиата тоV kairo auto．Altia oi $\delta ı a \mu a x \varepsilon \varsigma ~ \mu \varepsilon \tau a \xi u \tau \omega v \tau \rho 1 \omega v$ $\mu \mathrm{v} \eta \sigma$ тпp ω v tou θ povou kal tou aywva yia inv te入ık

 топо каı хроvo β абı $\lambda \varepsilon ı$ о．Baбıкп
 va $\varepsilon \times \varepsilon$ б σ т η v катохך tou ta tpia

> KATA KKEYA $\mathrm{KTH} \mathrm{\Sigma}$ ：PALACE FORMAT：AMIGA，ST，PC

 va пєı $\sigma \tau \eta v$ Х ω ра тои Anrea．Maлıбта
 ठıаठıкабıа аvaкали廿クऽ．Өа пєІтє о $\mu \omega \varsigma$ ：оІ ठракоı пои вıval；а а $\lambda \omega \sigma \tau$ avapepovtat kat otov tit λ о，apa kanou θ a ε xouv $\chi \omega \mu \varepsilon \vee \eta ~ T \eta v$ oupa

пері λ а $\mu \beta$ аиоuv апо катабкопвıа тои

 бєіра апо характпрєऽ пои
 прєпع। va Xрךбıопоוךбєтє каталлпла п．х．$\varepsilon \mu п о р о ь, ~$

 ка $\lambda \omega \mathrm{v}$ каı a т $\mu о \sigma \varphi$ аıрıк $\omega \mathrm{V}$ عıкоv $\omega \mathrm{V} \mu \varepsilon$
 каі uпоүधıа врүабтпріа ठпиіоирүıая $\mu a ү ı к \omega \mathrm{v} \varphi \rho a \sigma \varepsilon \omega \mathrm{v}$ каı φ เ $\lambda \tau \rho \omega \mathrm{v}$ ．$\Sigma \varepsilon$

 $\sigma \tau \eta \vee \tau \varepsilon \chi \vee \eta \tau \omega \vee \mu a \nmid \kappa \omega v \varphi p a \sigma \varepsilon \omega v$ Өa баৎ $\delta \omega \sigma \varepsilon$ то к $\lambda \varepsilon ı \delta ı$ tou палатıоu．

O η Х०ऽ $\sigma \tau \eta \vee \varepsilon \kappa \delta \circ \sigma \eta$ YIa $\tau \eta \vee$ AMIGA Пtav по入и калоऽ впाбクऽ，$\mu \varepsilon$ ипоß入Птікп ноиб⿺кп каІ $\varepsilon \varphi \varepsilon$ пои бuvoठ६uouv о入० то проүра μ а σ тпv $\varepsilon \xi \varepsilon \lambda ı \xi \eta$ tou．Av kaı бav пaıхviбı

кониатіа тои ıррои филактои．Auta θ а tou avoi६ouv ka！tiৎ пu入eৎ tou

 ठ $\varepsilon \lambda \varphi$ ivou．A $\lambda \lambda \omega \sigma \tau \varepsilon$ ava $\mu \varepsilon \sigma a$ $\sigma \tau a$ алла пробоvта пои апокта о apxovias eivat kat to μ ибтіко tns aӨavafias．इto maixviठı maipvouv $\mu \varepsilon р о \varsigma$ опшббПпотє трвіৎ паוктєऽ．
 uппархоuv трعıя avӨршпоı uпо廿П甲ıо．О
 $\mu \varepsilon$ хры каı touৎ ठио апо тоuৎ трєıৎ паıктєऽ бє періпт $\omega \sigma \eta$ пои $\delta \varepsilon \vee$ uпархеı капоוоऽ 甲ілоऽ－аvтіпа入оऽ．

Avtikeı μ عvo tou пaixviठiou чuбika η
 филактоu．To пои ßpıбкоvtaı auta ठev

 Өnoaupou．AvtiӨeta eival o otpatos
 пробчвроиv то бтєца．Kaı єпєıठँ каӨع отратоц прєпєı va үıvєтаı
 avaпараүєтє тоиৎ ठракоиৎ баৎ каı va 甲u入ate ta auүa тоия．Oбо абтєı

 онаба апо וбхироия ठракоия катш ano tis סוatayes oas．

O $\omega \omega \varsigma$ то паıхviסı ठ εv हıvaı $\varepsilon v a$ aкон η arcade．AvtiӨعta o Xapaktпраs tou عival кupia otpatпүікоৎ $\mu \varepsilon$ عvtova

 $\varepsilon к т \varepsilon \lambda$ ouv kaӨ φ 甲орa．Auteऽ
 $\varepsilon п а \varphi \eta, \delta \varepsilon v$ हival каӨо入оu вuко入o va
 mou ouvaviate．

H $\varepsilon \kappa \delta \circ \sigma \eta$ үıa ATARI ST ε Ivaı $\eta \delta \eta$ бто $\delta \rho о \mu о, \varepsilon v \omega$ үıa ta PC ava $\mu \varepsilon v \varepsilon$ тaı

To avӨрんாıvo үعvos عıरह عva опиаитіко $\mu \varepsilon ו о v \varepsilon к т \eta \mu a$ ，тп μ ікрך ठıарквıа 弓 $\omega \eta \varsigma$ тои． Акона кı ота⿱⿱亠䒑日儿 о о

 үعүоvoৎ $\pi \omega \varsigma$ عixav акон η каוро va бкє甲touv ti $\varepsilon п р \varepsilon п \varepsilon ~ v a ~ k a v o u v . ~ T o ~$ како о $\mu \omega \varsigma ~ \eta р \theta \varepsilon$ ．Оı avөр ω поı пробпаӨоибаv，μ атаıа，va סוainpクoouv ir 甲uбikn tous เборропıа．A入入a to μ оvo пои катарераи η tav va б $\eta \mu$ оиорүךоouv $\pi \lambda \eta \mu \mu и \rho \varepsilon \varsigma$, катаıүıठєऽ каı va катабтрع廿оuV to үعvetiko tous бuбinua．

 μ оvo ta avӨpшповıठ η ta onoıа каı avtikateठinoav to avӨp．んпıvo yevos．
 μ на пол η－ронпот каі бкопоৎ оои عival

 бıко σ ои avตтеро роипот，апо то
 үعviec．

Гіа то бкопо auto，ठıa日とtદıৎ عva
 катабкєиaбєıৎ عvav праүнатько

 харіп бои．Tо еруобтабіо бои
 tautoxpovns параүшүпя ронпот．

Фtiaxvovtas eva роипот，єпı入вүعıऽ пршта тои типо тои．Гіа парабвıүна о tunos jumpbot eival iסavikos yia

 проүраниатіไદıऽ то бкопо тои．

Oı عрүатєऽ（workers）проорıそоviaı ноvo үıa бu入入оүп evepүعiaç каı
 $\mu a x \varepsilon \varsigma$ опоu ह ξ оviшvouv aviına入a роипот каı катабтрв φ оuv $\varepsilon \chi$ Өрікєऽ полеıऽ к．лп．

इто ठроно оои Өa ouvavinбеıৎ аркєта врпобıа．Гıа парабєıүиа $\mu \varepsilon$ ріка ронпот віvai aठuvato va kıv $\begin{gathered}\text { ouv } \sigma \varepsilon \text { av } \omega \mu \text { a } о \text { о } \varepsilon \delta a \varphi \circ \varsigma, ~ v a ~\end{gathered}$

 ६ठа $\varphi \circ \varsigma$ тпऽ．

Ектоৎ апо то ерүобтабıо ठıаӨвтеıৎ

FINAL FRONTIER

KATA $K K E Y A \Sigma T H \Sigma:$
MIRRORSOFT
FORMAT：PC，ST，CMB 64
 $\mu \pi о р \varepsilon ı$ va $\sigma u \mu \beta \varepsilon ı$ каı σ тך ठıкך бou по $\boldsymbol{\eta}$ ．

O evaç β yaiveı oinv apx η tou проүрациатоц кı апо аutov μ порвıя va otapatas to maixviठi үıa 入ıyo，va
 пробtaбias к．入п．，हv ω бtov a入入о paivovial ta pounot－ta ठıka бou kaı та $\varepsilon \times Ө$ ріка，η по入 η к．λ п．
 үрпүороs тропоя үıa va apaviorıs
 عvav Nuker о опоוоs ठıаӨعтвı пup Пvıкп
 kal va tov عvepyonoinoeıc．Etol θ a

 $\mu \varepsilon$ то ронпот бои．Na Өuцaбаı отı η Плєктронаүvทтікп Өиع $\lambda \lambda a$

a ξ ıо λ оүo Xwpis auto va onuaiveı oti

 ıкаvoпоıптіка．

［IPA｜¢IIKIA	7
HXIOE	7
YחOOOEE［H	8
AINTIOXIHETTO XIPIOINIO	9
EYINOAO	8

IIpiv aпо поגи каıро， трєıऽ ठракот катєßпкаv апо $\psi \eta \lambda а$ каı $\varepsilon \varphi \varepsilon \rho a v$ т η к катабтрочп впал ω $\sigma \tau \eta \Gamma \eta$ ．O入ot uпहцєpav $\mu \varepsilon$ хріৎ отои $\varepsilon \mu$ раvıбтпкє عvac үعvvaios וппотクs，o Black Tiger，о опоוоs апо $\boldsymbol{\varphi}^{\sim} \sigma \iota \sigma \varepsilon$ va aүळvioteı үıa va
 та \ddagger ．Гia va ta катачереı препєı va прохшрŋбєı β аөıа бта крибииүєта $\tau \omega v \delta \rho a k \omega v$, va $\sigma u v a v i \eta \sigma \varepsilon$ हாıkıvठuvouç $\varepsilon \chi$ Өpous a $\lambda \lambda$ a kaı
 беvapio，kata入aßaivou ε отו ta праүната ठ εv عıvaı каөо入ои вико入а． Праүцатıка，бто Black Tiger

 отратпүıкп бая обо каı тпv тахuтпта．

BLACK tiger

KATAEKEYAETHE：U．S． GOLD FORMAT：AMIGA，ST，CBM， SPECTRUM，AMSTRAD

 то проүра μ а β вкпоч ε в ва
 періүрач η тпऽ апобто入Пऽ баৎ． А $\mu \varepsilon \sigma \omega \varsigma \mu \varepsilon \tau \alpha$ $\beta \lambda \varepsilon п о ч \mu \varepsilon$ tov inпотп

 $\tau \omega v \pi a i x v i \delta ı \omega v$ arcade ooo kai $\tau \eta v$
 $\mu \mathrm{a}$ Өа преппı va катвиӨиvहтє $\mu \varepsilon$
 tou joystick，Өa препєı va kavetع $\mu \varepsilon ү а \lambda а$ a $\lambda \mu a \tau a$, va бкар甲а $\lambda \omega v \varepsilon \tau \varepsilon$
 a $\lambda \lambda$ ouc εx Өpouc．Aпо $\eta \eta v a \lambda \lambda \eta, \theta a$

 $\Sigma a v$ va $\mu \eta v \varepsilon \varphi T a v a v$ o $\lambda a \operatorname{auta,~} \theta$ a
μ ая σ Inv $\mu \varepsilon \sigma \eta$ тпऽ оӨоvŋऽ．इто паvш $\mu \varepsilon р о \varsigma \beta \lambda \varepsilon п о \cup \mu \varepsilon$ то score，to high score，

 паvoплıas 甲aivetaı η हvepүधıa бas．

 इTous toixous $\varepsilon \mu \varphi$ aviそovial $\beta \varepsilon \lambda \eta$ пои
 $\varepsilon \vee \omega$ по $\lambda \cup$ бuvto μ а $\varepsilon \mu$ раvi弓оvtal ol

 бךцвıа пои бкот ω vovtaç tous
 Өa oas xpeıaбtouv．．По入u ouxva бto та६ıठا баৎ $\varepsilon \mu \varphi a v i \zeta о v t a ı ~ п а ү \omega \mu \varepsilon v o ı ~$
 aпо μ акрохроvio unvo．Өa баद

 $\varepsilon \chi \varepsilon \tau \varepsilon$ 入оเпоV $\mu a \zeta \varepsilon \psi \varepsilon$ аркєта vо䒑ıбиата μ пореітє va аүорабєтє бпаөıa，ропа入а，абпıठєৎ，паvoплı६ऽ，

Та үрачіка тои проүрадиатоя
 $\tau \omega v \eta p \omega \omega v$ обо ка। тоu $\lambda a \beta u p i v \theta$ оu عıvaı по入u кала ठıа入єүцгva каı по入и рعалıотıка．Еıठıка η ठıакоб $\mu \eta \sigma \eta$ т ωv бтошV हival ano tıৎ ка入utepeৎ пои

 $\eta p \omega \omega v$ عivaı аркєта ка入 η ，ठибтuх $\omega \varsigma$ о $\mu \omega \varsigma$ ta sprites ε Ival кап $\omega \varsigma$ м μ кра $\mu \varepsilon$
 animation va $\mu \eta$ v φ aıvoviaı по λ и ка入а． To scrolling eıvaı taxutato $\sigma \varepsilon 8$

To Black Tiger $\varepsilon ı v a ı ~ \varepsilon v a ~ \varepsilon v \delta ı a \varphi \varepsilon p o v ~$

o vapmátiкes．

Eщабтє бто пıлотпріо вVоऽ F15 ins McDonnel Douglas，$\mu \varepsilon$ סuo General Electric F111 $\mu \eta \chi a v \varepsilon \varsigma, \mu \varepsilon$ уıбтп тахитпta $1260 \mathrm{kts}, \varepsilon \xi \circ п \lambda เ \sigma \mu \varepsilon v o l \mu \varepsilon \tau \eta v$
 оплıка бибтпиата кат вто！μ о үıа

 аєробкачоиц ота херіа бая，каı va

 $\delta \omega \sigma о и \mu \varepsilon$ то оуона μ ая каı
 $\varepsilon \vee \eta \mu \varepsilon \rho \omega$ vouv үıа $\tau \eta v$ апобто $\lambda \eta$ ．

 Пгроікоц колпоц，Вієтvа ，Мвбך

 каı ठио ठıкєৎ тои періохеৎ，каı
 каı in Bopeıa Өa入aббa．

H апобто η ная алла弓धı апо

 по $\lambda \lambda$ ol ठıа甲оретıкоı впıүعıо！каı عvaepiol бтохоו，ω отє каӨє апобто入 η va exel kaı катı ठıa甲оретıко поu va траßа то $\varepsilon v \delta ı a \varphi \varepsilon \rho о v$ ．Гia каӨє періохП Өа ßреітє праүиатіка бтотхєıа $\mu \varepsilon \sigma а$ бто β в β лıаракı пои

 по入Еіৎ，tous бтохоия，ta a бибтпиата тои ε Х $Ө$ рои каı плпрочорıєऽ үıа то вıठоৎ $\tau \omega v$ aعроплаv ω v кal $\tau \omega \mathrm{V}$ пupau $\omega \mathrm{V}$ пои

Mi $\lambda \omega v$ tas үıa aepomiava，to
 ठıаүоретіка үıa avtima入ous oas，to каөгva $\mu \varepsilon$ акрı η Х характпрıбтıка птŋбŋऽ каı оплıка бибтпиата， ava入оүа $\mu \varepsilon$ тпи періохп．Ачои лоוпоv
 $\varepsilon \chi о и \mu \varepsilon$ пара va μ тоицє бто

 $\varepsilon \xi$ uппрретікп апеıкovion $\tau \omega \mathrm{V}$ орүav $\omega \mathrm{v}$ tou okapous，yla va кavoupe үpnyopa
 Yпархоuv ava入оүікєৎ каı ψ пиіакеऽ
 ичонетро каі тахитпта avuษ $\omega \sigma \eta \varsigma / \kappa a \theta \circ \delta 0 u$ ．

Ако $\mu \eta$ вхоинг то аито μ ато бибтпиа аvєирєбпя каı

F15 STRIKE EAGLE II

KATA ${ }^{\text {K KEYA }}$ ITHE：
MICROPROSE
FORMAT：PC

параӨupo عıval عıठıкотпта тпs MICROPROSE，ка। $\varepsilon \chi \varepsilon ı \mu \varepsilon ı v \varepsilon!$ amapa $\lambda \lambda а \chi$ т апо aut η tou F19．$\Sigma \tau \eta$ праүнатікотпта，та био проүраниата

 عival ano－3 $\omega \varsigma+9$ ，ava入oүa $\beta \varepsilon \beta a ı a \mu \varepsilon$

 $\mu п о \lambda ı к а ~ \lambda о เ п о v ~ ү ı a ~ v a ~ a m a \sigma \chi о \lambda \varepsilon เ \sigma \tau \varepsilon, ~$

 ε XOUV $\mu \varepsilon$ Iv F19）．

Та плПктра тои паıхvıठıоu हıvaı по $\lambda \lambda a$, каı өа хрвıабтвıтє по入и
 капоוоv бтохо（av катацврєtє va

 $\varepsilon v \delta ı a \varphi \varepsilon \rho \circ \vee \omega \sigma \tau \varepsilon$ va a६ıそદı тоv копо
 va петатє．

Tа үрамıка тои пaıxviठıou عıvaı $\varepsilon \xi а ı \rho \varepsilon т і к а, \mu \varepsilon$ по $\lambda \cup$ рєалıотıкп апеıкоvion тпร птпопऽ каı по入u ка入п тахиinta，$\mu \varepsilon$ оті ипо оүюбтп каı va
 $\mu \eta \chi а \vee \eta \mu \mathrm{a}$ ，μ пореітє va aпото $\lambda \mu \eta \sigma \varepsilon \tau$ $\mu \varepsilon ү a \lambda \eta$ हUкріveia үpaبıк $\omega v \mu \varepsilon$ катапл $\eta к т і к а ~ а п о т \varepsilon \lambda \varepsilon \sigma \mu а т а . ~ H ~$ апвікоvion tou коб μ ои $\varepsilon \xi \omega$ апо то

ठıa popa عival oti oto F15 ठ ε v
 μ пороин va үіvou ε аорато σ тоv $\varepsilon \chi Ө \rho \circ$, a $\lambda \lambda$ a $\varepsilon \chi$ оu $\mu \varepsilon$ afterburner kal перเбоотвреऽ апочвוৎ тои
 Kata ta a入入a，то пaìviठı кuルaıvetal
 прокатохои тои．

M ε to F15 STRIKE EAGLE II，η MICROPROSE $\varepsilon \Pi \mu \mu v \varepsilon เ$ va $\mu \varepsilon v \varepsilon ı$ oTךv корич $\eta \tau \omega \mathrm{V}$ по $\lambda \varepsilon \mu \mathrm{k} \omega \mathrm{V} \varepsilon \xi \circ \mu \circ \iota \omega \tau \omega \mathrm{V}$ птクбॄ

TIPADIKIA	9
HXIOE	9
YMOOEEEH	9
ANTIOXIH ETTO XIPOINO	9
IYINOAO	9

PLAYER MANAGER

iT－KICK OFF η tav kaı ε ıvaı
 $\tau \omega v$ проу $л \mu \mu а т \omega v$ побобчаірои $\sigma \varepsilon$
 $\varepsilon \kappa \delta о \sigma \varepsilon ı \varsigma ~ y ı a ~ A m i g a ~ k a l ~ A t a r i ~$
 mapov avtima入o．To PLAYER

 по отратпүіко оти入 ото η бП
 عva ouvסuaf $\varepsilon п ⿺ \lambda о ү \omega v$ каı праүнатікои побобраıрои поu $\sigma u \vee \delta \varepsilon о v \tau a!~ \mu \varepsilon \tau а \xi и ~$
 провлпиа тпऽ катпүоріая аutnৎ，пои
 пропүоинєvєя пробпаӨєıєৎ，єıvaı η аІбӨŋоп тои праүиатікои．$\Delta \eta \lambda a \delta \eta$ ката побо оІ пропоиптікєৎ впเлоү६ऽ， η ауора каı п $\omega \lambda \eta \sigma \eta$ паıкт $\omega \mathrm{V}$ каı оı
 Акои П роло паıЦعı η биниетохП тои
 абтаӨ $\mu \eta \tau \omega$ п парауоит ω р пои

 аріӨноиц каı бтатıбтіка．Побо о $\mu \omega \varsigma$ то перıßаллоv auto μ пореı va入єıтоирүпбеı бav evas праүиатікоя

 $\mu \varepsilon$ vou aпо опои μ порєітє va перабєтє

 каӨ $\frac{1}{} \omega \mathrm{va}$ ，a $\lambda \lambda$ а каı $\mu \varepsilon \tau a \operatorname{\tau \eta v}$
 пропоиптп пои μ пореı va عıvai $\varepsilon п а \varphi \varepsilon \varsigma ~ \mu \varepsilon т а ү р а \varphi \omega v, ~ п р о п о v \eta \sigma \eta$ ，
 к．a．Kaı μ оvo η перıүрач $\eta \tau \omega v$

 о $\mu \omega \varsigma$ auto поu عvסıapepeı عivaı η入eıtoupyia tou maixviठıou kaı η
 перібботвро $\mu \varepsilon$ та Өєтіка ர́ ариптіка

KATAEKEYATHE：ANCO FORMAT：AMIGA，ST

бтоıरвıа пои $\varepsilon \mu \varphi$ аviそоviaı ота киріотвра апо auta．

Aৎ $\delta о и \mu \varepsilon$ пр $\omega \tau$ та тоия паıктєৎ
 عvos naixvidiou ths katnyopiac．Eto Player Manager＂киклочороuv＂пєрıпои 1000 паıктєс．Фибıка η о $\mu \mathrm{\sigma}$ а бая

 ＂φ аквло＂$\mu \varepsilon$ пробапика ототхєıа ка। р $к$ кор опшऽ каı чибіка характпрібтіка．Апо η лıкıа，β ароя，

 бицивтохךऽ тои бта ठוачора

COMPUTER \＆SOFTWARE／IOYNIOE 1990

прштаө入пиата．ミтоıхвıо по入и Өعтіко
 $\mu \varepsilon р і к \varepsilon \varsigma$ 甲орєऽ η avaүvшо η нias
 ठибкола μ пороuv va бuүкратпӨouv．

 катпүорієऽ пои періла μ ßavouv о入єऽ tis үv

 паıхviठ．u．Обо үıa тоus mapayovies тПऽ ठtotкпопऽ，$\varepsilon \mu \varphi$ аviそovial va паı弓оuv $\sigma \eta \mu a v t ı k о ~ р о \lambda о ~ \sigma \varepsilon ~$
 апо入ибף бац бє періптшоп пои о оцаба ппүаіveı апо то како бто хеіротвро．Трітоя тонвая пои
 тпऽ о μ абая $\mu \varepsilon \sigma a$ бто үппвбо．Пєра апо та тєббєра клаббіка бибтпиата
 KICK OFF，unapXel عvac пinpms editor
 паıктшv $\sigma \varepsilon$ каөє үабך тоu паıхviסıou．

 ठои入єиعı паvш σ^{\prime} auto．Апо та

 апобоб μ иас оиабас．Пєра апо аuта
 katŋүopia oӨove¢ kal kata入oүol．H

 бтатıбтіка пропоvптп каı онабоऽ каі
 $\mu \varepsilon т а ү р а \varphi \eta$.

О $\mu \omega \varsigma$ ола auta ε xouv ε va бкопо．
 Player Manager eıvaı праүнатіка

 тоия паıктєऽ бто үппгठо каі va
 tou μ ats．Aко η va kaveı $\mu \varepsilon \chi$ рі ठиo аллаүєऽ бє паıктєऽ пои чибіка $\varepsilon \chi \varepsilon!$

 סuvatotทta парако入оиӨŋопя ката

 $\mu \pi а \lambda a \varsigma$ va параколоиӨعı हvav паıктп，

ка入Utعpos обо kaı η akpıßعıa $T \omega v$

 бтоv aywva $\sigma a v \xi \varepsilon x \omega$ рібтоৎ паıктпऽ， aпокта $\mu \varepsilon$ уал η о $\eta \mu a \sigma$ та то pavtap
 ү ω via．To o $\eta \mu a \delta ı$ tou
паıкт η－пропои $\dagger \eta$ عıval тот ε $\mu \varepsilon ү a \lambda \cup \tau \varepsilon \rho о$ каı Хрвıаそєтаı капоıа $\varepsilon \xi a \sigma k \eta \sigma \eta$ үıa va $\sigma u v \eta$ Өıбєtє va
 a $\lambda \lambda$ ol kivouvtal autovora．O $\omega \omega$ s аконך каı апо тоv паүко то паıхvıб！ eival ouvapraotiko va to парако入оиӨعı каvвıऽ．

To Player Manager $\delta \varepsilon v$ धıvaı $\varepsilon v a$
 μ пореı va кратповı $\mu \varepsilon$ уало хроvıко
 тпv ouaठa oaç va пaıpveı to
 μ о入ıs апо тпи трітп катпүоріа．H
 єпเтрєпєı va ouvexıにєтє то прштаө入Пна ка। тпv карıвра баऽ

Anco yıa μ Ia akо $\mu \eta$ чора μ ac δ เveı

 пıбтعuou ε то Kick Off，a入入a oıyoupa
 mapouбia tou aloөntп бtov $\chi \omega \rho$ ．Av to Kick Off $\sigma a \varsigma ~ \varepsilon \chi \varepsilon l ~ \delta \omega \sigma \varepsilon ı ~ \omega \rho \varepsilon \varsigma ~$ عuxapıotnons naıそovtas $\mu \varepsilon$ кanoious乡ı入ous，to Player Manager हıvalıहaviko
 баv пропоvŋтๆ．

 wpis va عival to ε हviкo μ as a日，„ $\mu \mathrm{a}$ ，то μ пабквт $\mu \mathrm{as}$
 xpovia бтіү $\mu \varepsilon \varsigma ~ \mu о v a \delta$ เкєऽ． Kai $\sigma \omega \varsigma$ عival a入ך $\theta \varepsilon i a$ oti to $\mu \pi a \sigma \kappa \varepsilon t ~ т а ı р ı a \zeta \varepsilon ı ~ \sigma t o ~$
 $\mu a \varsigma ~ п р \sigma \varphi \varepsilon \rho \varepsilon ı ~ t \eta v ~ \delta u v a t o t \eta t a ~ v a ~$

KATAEKEYA THE： CINEMAWARE FORMAT：AMIGA，ST

оvoната о $\mu \alpha \delta \omega v$ каı паıкт ωv ，

 $\mu \pi о р о и \mu \varepsilon$ va єпєцßоицє аконך ка। ота характпрібтіка т ωv паıкт ωv каı

ал入оі паıктєऽ катвUӨuvovtal aпо тоv

 Av η пабa हıval aбழa入ךऽ тотв autos
 прабіvo apı $\theta \mu$ ．То үппєठо єıvai $\chi \omega p ı \sigma \mu \varepsilon$ мо $\sigma \varepsilon$ тріа т $п \eta \mu$ ата，опшऽ

 yıa to eva ka入a日l，eva yıa to a入入o кала日ı kat $\varepsilon v a \quad \pi \lambda a v o$ yıa to $\mu \varepsilon \sigma$ о tou үппєठои．То проүрацна пробчврвı
 عvav aүwva basket．Кочщата， кар甲шната，甲аоил（бта трıа 甲аои入 $\varepsilon х о \cup \mu \varepsilon$ апо $\beta \circ \lambda \eta$ ），pivots，lay－ups kaı о入а auta $\mu \varepsilon$ ка入обхПนатוб $\mu \varepsilon v a$ sprites．Ano $\mu \mathrm{a}$ ү үvnola ava $\mu \varepsilon \tau a \delta \circ \sigma \eta$

 ßpıбкоvtal $\varepsilon \delta \omega, \mu a \zeta!\mu \varepsilon$ тіৎ о $\mu a \delta \varepsilon \varsigma$ ка।

 aүwvas，$\mu \varepsilon \tau$ ака акоиӨouv ol
 sponsor，каı бто т $\varepsilon \lambda о \varsigma ~ \varepsilon \mu \varphi a v i \zeta \varepsilon \tau a ı ~ ○ ~$ yvwotos μ аupos пароибiaбtis tou NBC о опоוоऽ μ ця періүрацеі тоV
 бтатібтіка бтоıхદıа．Мо入ıऽ чортшбоинв то проүраниа ßрібкоцабтє бто кеvтріко menu опои uпархоuv tрعıऽ عпилоүعৎ：Excibition， League Play kaı Clipboard．Me t ηv

 $\varepsilon п і \lambda о ү \eta$ League Play $\mu \pi о р о u \mu \varepsilon \mathrm{va}$ ठоu ε каı va $\varepsilon п \varepsilon \mu \beta о u \mu \varepsilon$ бтпV 入ıбта
 Мпороинв аконך каı va a入入аछоu μ та
va a $\lambda \lambda a \xi$ ou $\mu \varepsilon$ т $\eta v \beta a \theta \mu \circ \lambda o y i a$ tous

 $\varepsilon п เ \lambda о ү \eta$ Clipboard $\mu п о р о и \mu \varepsilon$ va $\delta о и \mu \varepsilon$ та бтолхєia t ωv о $\mu a \delta \omega v$ апо бтатібтікク апочך．То паixviठı

 апо тпи тплеорабп．Апо тוऽ
 $\mu \varepsilon \chi \rho$ to zoom tns канعрая σ то عvapkтпріо јump－ball．Пара $\lambda \lambda \eta \lambda a$ о $\omega \varsigma$ ，то проүра μ а $\delta \varepsilon v$ ибтєрع। бє סuvatotntes．Kai to عuxapioto عivaı оtı autes ol סuvatotntec ठev

 $\operatorname{av\tau } \mu \varepsilon \tau \omega \pi \iota \sigma \varepsilon ı$ हvas manager．

0 паıктךя（ $\varepsilon \sigma \varepsilon$ вৎ $\delta \eta \lambda a \delta \eta$ ）μ норяı va катєuӨuvel $\varepsilon v a v$ паıктך каӨє чора，

 бuvoठ̨uعtal ano rewind kaı fast－forward！Av λ oוnov oas apeбeı to
 кар甲 $\omega \mu$ ата а $\lambda \lambda$ к каı үıа
managemenet tns ouaठas，тотє то TV Sports BasketBall Өa бaৎ $\varepsilon v Ө o u \sigma ı a \sigma \varepsilon$ ．

COMPUIER cames

EKAOTHE Maipn Miveró
AIEYOYNTME
YYNTA三HE Eopdints Sopantions
AIEYOYNTHE
TAPARSTHE
Obsuococ Boills
EYNEPTATEE xphoros クivacas

GAME REVIEWERS

Aviunns Boptorionc Beodiong Kaikac

DESKTOP

PUBLISHING
Kioroc EToupinauioc ATEAIE
Obxia Mwai． Uopio Kavehlonoilou． lootoing PCons

AHM．EXEEEIX

 AIA Φ HMIEH Quitoo LTaugh
YHEYOYNEE ENTYMNN
Xuwober Aconoviou，Aenvi Boupowitif

TPAMMATEIA

Nounpuin Пatoopdom，Пomn Пlonodipuìn
©תTORPA
Etebloc röns，Enipos Xapormís

KYKAOヵOPIA

AIAKINHIM TEYX Ω N Enipos Tönos

MONTAZ

 andrpen Bailis AIAXRPIEMOI 4／XPRMIN Anitins Zopotives EKTYR®EH ＊ǘviopos：BIBAIOAEEIA Enioos Bpoxatoérs IAIOKTHEIA SOFTWARE AEBE

Kditu TApoda hoxpitoc AAhur STawnía 49－1068 AAtivn TAX． 3004667 － 3504710 FAX 35008162

AIEYOYNTHE

netrocs Tpanopopilins
YTOAIEYOYNTEE
Anootooia Touplitou Baydèrg Toppés
EIAIKOE EYMBOYAOE ribuns Hains
AOTIETHPIO
 Xovouil Mnapitoo．Natióo Koitoth

EYNAPOMEE

Sotware AEBE
ETupvipo 49．AGF｜va 10682
Equitpaná 4000
EEutepoí 8000
kunpoc 8000
Arepan 8000
Emyopiocec 4000

MAYOZ 1990 • TEYXOE 2

－EMATA

GAME NEWS
COMPUTER GALLERY
ADIEPSMA MOVIES
READY TO FIRE
GAME PREVIEWS
ARCADE ACTION
GAME TRICKS
ADVENTURE CLUB

GAME REVIEWS

SPECIAL：THEIR FINEST HOUR
DRAKKHEN
SOCCER
RICK DANGEROUS
AFTER BURNER
NINJA WARRIORS
F－15 STRIKE EAGLE II
SUPER CARS
PIRATES
THE MONSTERS
HENOPHOBE
KRYPTON EGG
AIRBORNE RANGER
M1 TANK PLATOON

Паїگєте аркєта́;

AПOムEIETE TO,
2π

AYTO TO KANOKAIPI!

Еїте тuxepoí;

n KAAOKAIPINOE

А/AГתNIEMOE

ITך β рабла пои єпєбє о
 коциӨпкє отп μ крр по пп η tou Lizard Breath．Kaı Tnv

 биичора．О тврабтוоऽ $\mu \varepsilon \tau \varepsilon \omega р і т \eta \varsigma$

 avauعба tous o npwas tou maixviסıou ठоктшр Greg Bradley，η tav umeuӨuvoı
 $\mu \varepsilon \tau \varepsilon \omega \rho / \tau \eta . O \mu \omega \varsigma \varepsilon v \omega$ ol $\varepsilon \rho \varepsilon \cup v \varepsilon \varsigma$
甲пигऽ apxıбav va киклочороuv，пои
 μ ирипүкıа пои киклочороибаv бтףv

KATA K KEYA $\Sigma T H \Sigma$ ：
CINEMAWARE
FORMAT：AMIGA，ST
 tepat ω v．Mia aпоото $\eta \eta$ үіа то тріто
 yıa үعpa veupa．H CINEMAWARE $\varepsilon \chi \varepsilon!$

عıXav avtıkpuбeı．Etoı ol عрعuves отрачпкаи проц аuт η т η к катвиӨuvoŋ kal үpクүора عүıvє үv $\omega \sigma$ то $\pi \omega \varsigma ~ \eta$

 μ ілоибє үıа μ ир $\mu \eta$ үкıа－үıүаvtes．
 દાメモ пદાраそદા．

Eठん apxıそદı ка। то пршто $\mu \varepsilon \rho \circ \varsigma$ tou пaıxvıठıou．Пaıpvovtas in $\theta \varepsilon \sigma \eta$

 апо та ovta onwৎ $\operatorname{x} v \eta$ пои ε хоuv
 auta kal av عıvaı סuvatov капоьо $\mu \varepsilon \lambda о \varsigma$ tous．

Гıa va үıvouv o入a auta रpeıa弓etaı
 umopouv va oas ßonӨŋoouv ol μ артирıєৎ каı плпрочорıєऽ ठıачоршV ато $\mu \omega \mathrm{V}$ тПऽ по入Пऽ．Н ठрабп тои

 $\varepsilon \mu \varphi$ аvi $\langle\varepsilon$ та। бто кат $\omega \mu$ кроৎ тクऽ

 поккıлıа апо avӨрюпоиц пои Өа
 пои $\theta \mathrm{a}$ баৎ $\mu \pi \lambda \varepsilon \xi$ оuv $\sigma \varepsilon$ ठıа чорєऽ kataotageiৎ on $\omega \varsigma$ aүшveऽ $\mu \varepsilon$
 Oरa auta हxouv бкопо va баs
 по入итіно хроvo．Ако η о о $\omega \varsigma$ кı апо

 autes μ аそعutouv o otpatos Өa ava入аßعı та uполоппа．Мє опла апо छпра каı aعpa Өa проопаӨŋбоuv va $\varepsilon \xi \circ v \tau \omega \sigma$ оuv ta т ε рабтіа μ ир $\mu \eta ү к ⿺ а$. Е $\delta \omega$ عХоицє то $\delta \varepsilon \cup \tau \varepsilon \rho о$ коциаті тои
 брабп алла каı бтратпүıкп．Таvкя

 тП้ $\varepsilon \xi \varepsilon \lambda \iota \xi \eta$ tou ava入oya $\mu \varepsilon$ то $\sigma \chi \varepsilon \delta \iota$

 кало паıхvıठı μ оvo поu отпи Amiga хрєıаそєтаı $1 \mathrm{MB} \mu v \eta \mu \eta \varsigma$ ．То проүра $\mu \mu$ а прон η өитппканє апо то Computer Market 2.

M1 TANK PLATOON

EIMal бiyoupos oti ol пєрібоотєроі апо воаৎ пои

甲avtapoı．Пap＇oлa auta हוमal हாions oiyoupos oti ol перібоотєро। апо вбаৎ Өа єХєтє
 عauto oas va ßpioketє $\mu \varepsilon \sigma a$ бє हva
 $\pi เ \sigma \omega$ апо вva uпधроuyxpovo по入иßо入о，цєба бє हva атоцเко uпOßpuxio ń пavw oє eva ouyxpovo арна $\mu a \times \eta$ ．

> KATAEKEYATHE： MICROPROSE
> FORMAT：PC，ATARI ST， AMIGA，COMMODORE 64， APPLE

H Microprose o $\mu \omega \varsigma$ бкє φ т $\eta \kappa \varepsilon$ пpIv
 $\varepsilon v a$ simula tion onou ratpvoune umo tis ठıatayȩ $\mu a \varsigma$ охı हva，outع ठuo a入入a т $є \sigma \varepsilon \rho а$ ар μ ата．

Гіа та прыта μ пороинє vа поицє

 tou пилотои авробкачоия，тои $\mu а х \eta$ тп，

 $\delta \varepsilon v \varepsilon і х а \mu \varepsilon$ каниıа опиаvтікп mapouolaon．

Прєпєı va онолоүпош отı η Өŋтвıа

 a入入a evas kovtivos ouvepyatns μ as عХعı пареı ta autia kal aıбӨavo μ aı
 Өa عıval ol tuxepol－atuxol nou θ a
 auta ta терата тои по入єцои．

 акоибоицв то характпрібтіко пои kavouv ol हрпuбtpi\＆ৎ tou ариатоৎ ка। tov η Хо пои каve। то пироßо入о тои отаv єкпирбокротвı．Eıvaı μ ıа арквта рعалıбтікп бкпทП $\mu \varepsilon$ арквта рعалıбтוкоия η Хоия．

То по рعалıотіко，оншऽ апо ола

 va छ६рєтє по入и кала аүүлıка，ал λa

 aбхо入ПӨŋка $\mu \varepsilon$ то manual пара $\mu \varepsilon$ то

 μ крои $\mu \varepsilon ү \varepsilon Ө$ оия，опои оІ плпрочорієऽ үıа тоу тропо пои өа паı६єтє то паıхvıठı апотв入оuv to عva ठєкато тои $\beta ı \beta \lambda ı$ ои．
$\Sigma \varepsilon$ аито 乃рпканє плпрочорієя үіа
 uпо тıৎ ठıatayeৎ μ ас．Проквıтаı үıa eva aпо та пı ouyxpova apuata t ωv $\Delta u v a \mu \varepsilon \omega v$ tou NATO，to M1A1＂Abrams＂．

Апо то β ィ β ло μ аӨaivou $\mu \varepsilon$ отı проквіtal үıa eva паvioxupo ap μ а $\mu \varepsilon$ пuроßо入о T $\omega \mathrm{V} 120 \mathrm{~mm}$ ，п λ прр $\omega \mu$ а $\tau \varepsilon \sigma \sigma a p \omega v a v \delta \rho \omega v, \beta \lambda \eta \mu a \tau a$ APFSDS
 каı $\varepsilon v a ~ \sigma \omega \rho о$ акона праүната．

Ta $\beta \lambda \eta \mu a t a$ APFSDS ε हıaı

 $\theta \omega р а к ı \sigma \mu \varepsilon v \omega v$ ох $\eta \mu a \tau \omega v, \mu \varepsilon \sigma a$ бтı

 ариата，тпv avarouia kal т $\eta \vee$
 ouyxpovou aphatos．
 киріотера ариата $\tau \omega v$ ठuva $\mu \varepsilon \omega v$ tou NATO，TIৎ عாıठобعוৎ TOUS TOV

 праүнатікпऽ μ ахпऽ，акона өа μ аөвтє та ıठıа бтоıरहıа үıа та киріотєра aphata tou бu $\varphi \omega$ vou tis Bapooßıas ка। $\varepsilon v a ~ \sigma \omega \rho о$ акона прауцата пои عvas пор $\omega \mu \varepsilon v o \varsigma ~(\sigma a v \varepsilon \mu \varepsilon v a) ~ \mu \pi о р \varepsilon । ~$ va катбєı кaı va $\ddagger \varepsilon к о к к а \lambda เ \sigma \varepsilon ı ~ \mu \varepsilon \chi р ı ~$

Гіа va перабоинв о $\mu \omega \varsigma$ бто

 т $\boldsymbol{\mu} \mu \circ \rho \varphi \eta$ тпऽ $\mu a \chi \eta \varsigma$ пои $\theta \varepsilon \lambda о u \mu \varepsilon$ va $\varepsilon \mu \pi \lambda$ акочив．

H ठибко入ıа ६६кıvaعı апо то

 $\mu a x \eta s$ onou ol бтохо вıval kivou $\mu \varepsilon$ vol， вхоuv ка入ичП авропорıаৎ каı пє弓ıкои

Гıa va μ пои κ б ε 甲aбך праүнатікпऽ $\mu а \chi \eta \varsigma$ өа прєпєı va amavinбоu ε б $\sigma \sigma$ та $\sigma \varepsilon$ عva μ ккро

Avatpexovias oto β ı β лıаракı μ торои $\mu \varepsilon \mu \varepsilon$ льү п паратпрптікотпта
 пहрабои $\mu \varepsilon$ σ т μ ахך．
 $\mu \varepsilon \rho \circ \varsigma$ tou Xupth ths tonoerolas nou हivai η aпобто入 $\eta \mu$ аs．Ехоиня uпо тіs

 हva入入аббоч $\frac{1}{}$ то роло μ ая апо
 пироßо入ŋтп，үıа каӨє عva апо тє т $\varepsilon \sigma \varepsilon \rho a$ ар $\mu a t a$.

 $\delta \varepsilon v ~ п а \varepsilon i ~ к а \lambda а . ~$
$\Sigma \varepsilon$ перипт $\omega \sigma \eta$ пои пароииє тп $\theta \varepsilon \sigma \eta$
 бто хвוрібно μ ая тои пирүібко тои ариатоऽ каı то μ ккро пироßодо （тропоя тои 入єүعıv μ ккро）हva M2， 12.7 mm ，каı μ порои $\mu \varepsilon$ va каӨорıоои $\mu \varepsilon$ тп ouuvoגık η апоठоо η tou ариатоя．

「ıa va ava入uoou $\varepsilon \varepsilon \varepsilon \chi \omega$ рıбта каı
 каөє عvas апо тоuৎ т $\varepsilon \sigma \sigma \varepsilon$ ріৎ عпйвгя тои ариатоя $ө$ а

 eva kavoviкo ap a．

 отохо үıa va tov ßpıбквı пıо вико入а，

 пои Өа хрПбџопоіпбє，
апобтабіоиетро laser，computer

 દvరદાદદıく．

Епгוठך aкрı $\beta \omega \varsigma$ ol $\varepsilon \lambda \varepsilon \gamma \chi$ о। пои $\varepsilon \chi$ оu ε va kavou ε عival $\delta \varepsilon к a \delta \varepsilon \varsigma$ ，

 tou пaıरviठıou．

 плПктро каvعı ті；

To naıxviठı हıval $\chi a \rho \mu a \circ \varphi \theta a \lambda \mu \omega v$

 $\sigma т ı ү \mu$ о $\mu \omega \varsigma$ пои $ө$ а та катачерєו а $\mu \varphi ı \beta a \lambda \lambda \omega$ av прокєıтаı va

uno入oyioin tou．
Та урачіка каı о η Хоৎ тои

 ипо入оүוбтєऽ $(286,386)$ опои та үрачіка ε хоuv по $\lambda \cup \mu \varepsilon$ уа入 η
 рعєı по оцала．

To паıхvıסı ппра $\mu \varepsilon$ aпо тŋ้ DELTA $\overline{\boldsymbol{\theta} . K}$.

ГPPAIPIKIA	9
HIXIOIE	9
YMOOEEIH	10
ANTIOXIH ETTO XIPONO	10
$\Sigma Y I N O A O$	10

MANCHESTER UNITED

inv потє єuхŋӨПкатє va عוбтє －Alex Ferguson，o team manager tic Manchester United，गє ta oveıpa баৎ μ mopouv va үıvouv праунат．ıотпта．То пьо ठıaб μ о побоб φ аıріко $\sigma \omega \mu$ атвı tou

 Bретаviкo прштаө入 $\eta \mu a$ ．Oı арнобıотптгৎ бац өa عiva！по $\lambda \lambda \varepsilon \varsigma$ каı ठибколєऽ，а чоu өa прєпєı va

 каutaotaon t $\omega \mathrm{v}$ паıкт $\omega \mathrm{v}$ ，тія
 чибіка $\mu \varepsilon$ тпv оікоvонікп катабтаб
 провठро каі тоиц ठпнобіоурачоиц： вvа μ кро отраßопатпиа каı өа ßрعӨєاтє аvعрүос．

Tहो ε ו ω Vovtaऽ о $\mu \omega \varsigma \mu \varepsilon$ то

 －Өоvŋ．$\Sigma \varepsilon \varepsilon$ va pea入ıatiko трıбठіаотато үПпЕठо，η United θ a avtıит $\omega \pi \iota \zeta \varepsilon$ тоuş avtina入ous

 aко䒑 η ठuvatov va katعuӨuvete inv
 опшऽ акріß $\omega \varsigma$ бта ипо入оाпа побоочаіріка проураината．Мвта то

 $\gamma v \omega \mu \eta \varsigma \sigma \tau \eta \vee \varepsilon \varphi \eta \mu \varepsilon \rho \iota \delta a$ Daily Mail，kal
 аү ω va．Форт ω vovtas то проүра $\mu \mu$ а
 ε וкоvakia．Meठ ω aut ω v үivovial ol ßaбıкєৎ عпı入оү६ৎ tou manager．Aৎ ta ठоu $\boldsymbol{\varepsilon}$ ava入utika：

Team Squad：ПapouбıZZovtaı oı

 mouse to ovoнa капоוои паıктп

KATA KKEYA 5 THE： CRYSALIS
 FORMAT：AMIGA，ST

 हvtun $\omega \sigma$ Iakn digitized $\varphi \omega$ тоүрайa tou．

Players Injured：O каталоүоৎ $\tau \omega v$ траицать $\sigma \mu \varepsilon v \omega v$ паıкт $\omega v, \mu a \zeta!\mu \varepsilon$ періурачп тои траинатоц каı $\mu \varepsilon$ тоV

Players Suspended：Oı паıктвৎ пои $\varepsilon \chi$ оuv тı $\mu \omega \rho \eta \theta \varepsilon \iota, \mu a \zeta \iota \mu \varepsilon \tau \iota \varsigma$

Transfers：Апо $\varepsilon \delta \omega \mu$ порвіт $\boldsymbol{v a}$

Training：Апо $\varepsilon \delta \omega \sigma \chi \varepsilon \delta \iota a \zeta \varepsilon \tau \varepsilon$ то проүраниа єкүицvaoŋऽ каөє паıктך yıa va $\beta \varepsilon \lambda \tau і \omega \sigma \varepsilon ı$ бuүкккрı $\mu \varepsilon$ va Характпріотіка．Хреıа弓єтаı $\mu \varepsilon ү а \lambda \eta$ пробох η үıatı η Uперßо入ıк η $\varepsilon к ү и \mu v a \sigma \eta \mu \pi о р \varepsilon і$ va коирабєı，акоцп kaı va tpauцatıгя．
 пıvakas $\tau \omega \vee$ anote $\lambda \varepsilon \sigma \mu a \tau \omega v \tau \omega v$ о $\mu a \delta \omega v$ ，ка $\theta \omega \varsigma$ каı η б $\eta \mu$ отнкот η та тои manager，$\mu \varepsilon \sigma \omega$ TOU $\varepsilon \xi \omega \varphi \cup \lambda \lambda$ OU Tทऽ Daily Sport．

Disk Options：Апо $\varepsilon \delta \omega \mu \pi о р \varepsilon ı \tau \varepsilon$ va

 tov रpovo ठıapkeıaৎ tou aүшva kaı tu

 оvоната паıкт $\omega \mathrm{v}$ ．

MatchBall：Апо $\varepsilon \delta \omega \mu$ пaıvou $\mu \varepsilon$ бто аүшviotıко $\mu \varepsilon \rho о \varsigma$ ．A甲оu каvou $\mu \varepsilon$
 бибтпиа ठıата $\eta \varsigma$（п．х．2－3－5）， $\varepsilon п и \lambda \varepsilon ү о и \mu \varepsilon ~ п а เ к т \varepsilon \varsigma ~ ү ı а ~ к а Ө \varepsilon ~ Ө \varepsilon \sigma \eta ~ к а ı ~$

 $\mu \varepsilon р о \varsigma$ тои проүра $\mu \mu$ атоя．Σ ппи
 влєпои $\mu \varepsilon \mu$ ла μ коооррачіатои
 коикıठ६ऽ．इто үŋп६ठо umapxouv ia
 о пнаıакıа，ако η каı оı паүкоı $\tau \omega v$ пропоv $\eta t \omega v$ ．Оı паıктєऽ عıval ıठıaıтєра $\mu \varepsilon$ үала sprites каı $\mu \varepsilon \mu \varepsilon ү a \lambda \eta$ поıкı λ ıa
 б $\eta \mu \varepsilon ı \omega v \varepsilon$ taı $\mu \varepsilon 4 \beta \varepsilon \lambda$ акıа．То паıХvıбı ouvodeuouv ol laxec t ωV pi λ a $\theta \lambda \omega V$

 ıкаvoroıŋтікоৎ．

H ano $\eta \mu \mathrm{\mu} \boldsymbol{\rho}$ عival oti to

 пароноьа проүраниата．Av каı проб ргрєтаı $\mu \varepsilon ү а \lambda \eta$ поккıлıа $\delta u v a t \omega v \varphi a \sigma \varepsilon \omega v$ kal $a \lambda \lambda \omega v \varepsilon \varphi \varepsilon$ （опんऽ replay t $\omega \mathrm{V}$ үко入 апо тоия
 عivaı $\mu a \lambda \lambda$ оv apyo．इто бтратпүıко
 Crysalis пaıpveı apıota．

To apıoto user interface kat η

 kal үıа прохшрпиعvouc managers．！．

$\overline{\Phi . \Lambda .}$

［｜P｜A｜क｜IKIA	9
HXOE	6
YIOO｜e｜EEH	7
AINTTOIXIH ETTIO XIPIOINO	8
EYNO＾O	7

iTそ̄ впохП поu о Apxovias tou $\varphi \omega$ тоऽ киßعрvouøe o λ ous tous yanakiદৎ，tnv єпохク пои о хроvоऽ ठєv
 т $\eta \vee \varepsilon \mu \varphi a v i \sigma \eta \tau \omega \vee \eta \lambda เ \omega v$ Kree kaı Ma otov oupavo，to \sum u β ßо入o tns Evorntas（The Kristal of Konos），甲u入aбботаv кала клвıб $\omega \mu \varepsilon$ vo бто $\chi \omega \rho \circ$ тŋऽ Ayarins．

Гia по入入оus aiwves to Kristal
 ıборропиа бtov кобно $\omega \varsigma$ т η v бтіүцп nou o Mulagar，o（ a $\ddagger \circ \varsigma$ umnperns tou
 тпऽ Ayanns кat va apma ε в। to Kristal．
 avoixto to ठроно үіа tous عாта
 карठاءऽ $\tau \omega v$ av $\theta \rho \omega \pi \omega v$ ．
$О \mu \omega \varsigma$ ० Malagar，ठ εv ката甲 $\rho \varepsilon$ пот va ptáel tov apevin tou．

 тои хаӨŋкау．Гіа поли каіро тіпота ठev akouүotav үıa to χ д μ हvo Kristal．

O Gru o $\mu \omega \varsigma$ ката甲ере va то β ре। $\sigma \tau \eta \mathrm{v}$ акр η тои кобнои каı $\mu \varepsilon$ тп
 кричعı бє عva μ ибтıко Өала μ о．

Ek ε हıval үpa $\mu \mu \varepsilon v o$ va $\mu \varepsilon ı v \varepsilon ı, \mu \varepsilon \chi \rho!$
 va to avaka入uభع！kal va to топоӨعтпбєו бто архıко тои $\mu \varepsilon$ роя． Хрвıа乙عтаı Өарроц，коираүıо，μ п пוо поли ща карбıа үєцатп аүапп．

Autn Өa عivaı kaı η aoniठa бou evavtia бtic סuvatotnteৎ סuvauعis tou бкотоия．

To ovoua бou عıvaı Dancis Frake kaı бкопоৎ боu va avaка入иЧદıৎ пои عivaı крииєvo to Kristal．ミto ठро $о$ о бои ouvavias каөє عוסоuৎ $\mu \circ \rho \varphi \varepsilon \varsigma$ ，

Otav tह入દוんбouv oti हXouv va oou

THE KRISTAL

KATA ${ }^{\text {KEY }}$ A $\Sigma T H \Sigma$ ： ADDICTIVE
FORMAT：PC，ATARI，AMIGA
 аркєı，$\xi \varepsilon \pi \varepsilon \rho \vee \omega v t a \varsigma ~ o \lambda о u s ~ t o u s ~$

 $\varepsilon \kappa \varepsilon$ ．．

 anavinoŋ пои $\sigma \varepsilon$ а $о$ ора $\varepsilon v \omega$ а а $\lambda \varepsilon \varsigma$ чорея η апаvinon हxel капоіа

Пробє६є үıаті Өа пргпєı va aпavino
 прєпєi va кuцaivetai $\sigma \varepsilon \mu \varepsilon ү а \lambda a$
 то бкопо бои．Ектоৎ апо тоv ठєıктך

 перабвıৎ тіৎ парапара μ орфєऽ．
¿tıৎ סuvateৎ عпı入оү६ৎ umapxeı kaı
 Skringles．Mпоргıৎ va ૬оठદ skringles σ ou（ $\delta \eta \lambda a \delta \eta$ ta vo μ б $\mu a \tau a$ пои ठıаӨعтєıৎ），үрацоитаৎ то побо

O пХоя tou пaıxvioıou عıvaı ка入оৎ，
 $\mu \mathrm{k} \rho \eta$ घıбаүшүך．

Мвүа入п пробохП عхєı ठоӨєı бта үраціка tou пaıरviठiou，поu
 т η २ поккı入ıа каı то пробєктіко бхعठІаб
$\overline{\Delta . П .}$

COMPUTER \＆SOFTWARE／IOYNIOE 1990

HERO＇S QUEST

EINAI \triangle YNATON ENA ADVENTURE GAME NA MOIAZEI TOIO ПОЛҮ МЕ ПАヘIOTEPA ПAIXNIDIA TH $\Sigma ~ \Sigma E I P A \Sigma ~ K A I ~$ TAYT～XPONA NA EINAI TOミO PIZIKA $\triangle I A Ф O P E T I K O ~ K A I ~$ ПРЯТОТҮПО；NAI EINAI！
EIDIKA AN ПPOKEITAI ГIA ENA AПO TA TEへEYTAIA ПAIXNIDIA TH $\Sigma, ~ П A \Sigma I \Gamma N \Omega \Sigma T H \Sigma ~ П \wedge E O N ~ S I E R R A, ~ П O Y ~ Ф E P E I ~$ TO ONOMA HERO＇s QUEST．KAI $\Sigma A N ~ T N H \Sigma I O ~ Q U E S T ~$ $\Sigma T E K E T A I ~ A K P I B \Omega \Sigma \Sigma T O$ Y $\because O \Sigma$ TOY！

Iтпv apxп бквчтонабтаv va пароибוaбоuиع үіа то $\mu \eta$ va auto eva aпо та по入и kaivoupyia maixviסta nou
 т ε лعutaıous $\mu \eta$ veऽ，тобо үıa va $\varepsilon \mu а \sigma \tau \varepsilon ~ \varepsilon п เ к а ı р о ı, ~ а \lambda \lambda а ~ к а ı ~ ү ı а т ı ~$ проквітаі үıа μ еріка поди чаvтабтіка пaixviठia．इin ouvexeia o $\omega \omega \varsigma$ ，

 пароибוaбع। हvtomıбацє to Hero＇s Quest．

 $\Sigma \tau \eta v a \pi о \varphi a \sigma \eta \mu a \varsigma$ va пароибוабоицв то паixviठ́ auto

 т $\eta \varsigma \sigma \pi \eta \lambda \eta \varsigma \mu a \varsigma, \Delta \eta \mu \eta \tau \rho \eta$
 хартп тои паıхviбıои $\mu a \zeta!\mu \varepsilon \mu$ ı протєıvouعvๆ $\lambda \cup \sigma \eta$ ，поu av каı ठєv

 паıхиıбঠוou．

Ta прюта عкєıva бкотधiva хpovia $\tau \omega \mathrm{V}$ adventure games η हvvoia $\tau \omega \mathrm{V}$

 пои бкот $\omega \mathrm{vav}$ ठракоиц каı аүpıа
 aпо kakous $\mu a y o u s$ kal $\varepsilon v a \quad \sigma \omega \rho o$ тетоіа пршіка бevapia．

M ε то паıXviठı auto η Sierra μ as
$\mu \varepsilon т а \varphi \varepsilon р \varepsilon ⿺ 𠃊 \varepsilon$ то $ү$ ршбто ठıко тПऽ тропо бта палıа кала عквıva Xpovia．

TO ПЕРІВА＾АON TOY ПAIXNIDIOY

 по $\lambda \lambda$ пп праүцата үІа то періßа入入оv
 опнаvтіка $\mu \varepsilon$ ола та пропүоицвva паıXviઠıa пои вхєı пароибıабвı η Sierra．

 прعпध। va тovioou ε п $\eta \vee ~ п о \lambda \lambda \eta ~ к а \lambda \eta ~$ т $\varepsilon к \mu \eta \rho เ \omega \sigma \eta$ каו оруаvшбп пои
 Sierra．
$\Sigma \varepsilon \varepsilon v a$ оүк $\omega \delta \varepsilon \varsigma$ пакєто ßрібкоииє

 χ хорптікотпtas 720 KB ，үıa autous пои

 чи

 avtiцвтшпоऽ．

То паıхviठı паıくદтаı тобо апо тıৎ
 عivai 入ıyo عкveupiotikos，a甲оu anaiteital apketos xpovos avaرovns

 паıхviठı，обо каı апо то оклпро ठıбко， бтоv опоוо то паıхvıठı हүкаӨıбтатаı

COMPUTER \＆SOFTWARE／IOYNIOE 1990

троүраниатоя пои ßрібквтаі бтпи прштП ठıбкєта．А Аои вүкатабтПооицв то паıХviठt бто ठıбко μ пороицв va

 тпऽ Sierra．Σ in $\delta ı a \theta \varepsilon \sigma \eta \mu a \varsigma \varepsilon \chi \circ \cup \mu \varepsilon$ हva user－inerface пои апотвл ε เтаı апо μ да бعıpa $\sigma u v \delta u a \sigma \mu \omega v ~ \pi \lambda \eta \kappa \tau \rho \omega v$ үıa
 モvepyeicu．Autec eival סuvatec va
 عוז $\mu \varepsilon$ то joystick，av $\varepsilon \chi \circ \cup \mu \varepsilon$ бтП $\delta ı a \theta \varepsilon \sigma \eta \mu a \varsigma, \varepsilon เ \tau \varepsilon \mu \varepsilon$ то поvtikt．

As паратпр $\sigma о и \mu \varepsilon$ в $\delta \omega$ от। то Hero＇s Quest unoornpıЦદi，μ Ia бعipa апо картєৎ оӨоvクऽ опшৎ CGA， Hercules，EGA／VGA，μ ıа $\sigma \varepsilon ı \rho a$ апо
 tou IBM，Joystick kal поvtiki．
 вхоинв бинперіла μ ßаvoviaı η ठuvatotnta va $\sigma \omega \sigma$ оини каі avaka入 $\varepsilon \sigma о \cup \mu \varepsilon$ हva пailरvıठı，va
 архП каı va β үоице апо то паıхvıठı．

Акона μ пороинв va ри $ө \mu \sigma о и \mu \varepsilon$

 прwas μ ая каı о ипо入оіпо характпрея тои паıхviбiou，va боuиє

 хрךбњопоוоuvtat ката короv бто
 CAST SPELL kaı η LOOK．

H kivnon tou npwa үivetai $\mu \varepsilon$ ta $\beta \varepsilon \lambda а к і а$ тои плпктролоүוои，$\mu \varepsilon$ то Joystick ń $\mu \varepsilon$ to поvtikı．Oı Xpクoteৎ tou

 pons tou пaixviסıou，va пароине tiৎ $\pi \lambda$ прочорієऽ пои Өа паирvа $\mu \varepsilon$ av үрачаиє т \ddagger v $\varepsilon v \tau о \lambda \eta$ LOOK AT каו то ovoua tou avtikeınevou．

Xарактпрıотіко вıvaı отı عпвıбŋ бто паıхvıठı uпархєı η हva $\lambda \lambda a ү \eta$

 то $\sigma u v \delta u a \sigma \mu \circ$ T $\omega v \pi \lambda \eta \kappa т \rho \omega v$ CTRL－S

 $\varepsilon \xi \eta ү \eta \sigma о \cup \mu \varepsilon$ пара кать．

Н ҮПОӨЕГН TOY ПAIXNIAIOY

Еठ ω та прауиата $\delta \varepsilon v$ عıvaı ка！ tобо апла．О бкопоৎ μ ас̧ ठ εv हıvaı عvas a入入а по入入оı．Прєпгı va чєроииє
 праदॄıऽ пои Өa μ ая avaкирทそоuv

$\Sigma \eta \mu$ avtiko ε eval $\pi \omega \varsigma \eta$ Sierra паıрveı घva тобо коוvotumo oevapıo
 auto हva паı रvıठı поu бuvठuaそદı прштотипıа，онориіа каı аүшvia．

Прштархıкоऽ，入оוпоv，бкопоऽ μ ая
$\varepsilon п ı \beta ı \omega v \varepsilon ı \mu \varepsilon \sigma a$ σ тıs avtı\}oعৎ бuvӨŋкєऽ тои ठабоuৎ tou Spielburg．

Н عпıлоүך हvos ano tous tpeis характпрея عival опиалтікп үıа тоv апло лоүо оті ava入оүа $\mu \varepsilon$ поוоv характпра вхоинв ипо тоv влहүхо
 apk $\varepsilon \tau \omega v$ үрі甲 ωv ．

 $\mu \varepsilon$ autov $\xi \varepsilon к ı \nu \eta \sigma a \mu \varepsilon$ кaı $\varepsilon \mu \varepsilon ı$ ৎ）$\mu a \varsigma$
 катабтабŋя тои характпра．
$\Sigma \varepsilon$ autov umapxouv ठıачореৎ
 हvav aпо тоus треıя характпрея，үіа

 Пр $\omega \varepsilon$ ¢ tou x ω piou tou Spielburg．

「ia va to ката甲ероинє аuто прєпє। va ßpoune to xauعvo үı ка। тп
 kia o apxovtas tou Xwpiou kal va
 tupavvia $\mu \mathrm{a}$ ая $\mu \varepsilon ү а \lambda \eta \varsigma$ опعірая $\lambda \eta \sigma$ т ω каи тои apxクyou tous．

 Характпрея вıvaı вvas пол $\varepsilon \mu$ ৷ттпs，

Käe evas ano autous סıaөeteı kaı

парабвіүна о полвнібтпऽ вхєı аркєтп

 порт $\omega \mathrm{v}$ ，бта бкарчал $\omega \mu$ ата каו σ т סuvatotnta va перvaعı апаратпрптоя．

 tou $\eta p \omega a \mu a \varsigma$ ，av arочабıооицв va ava日 $\sigma \sigma$ ои ε IKavotnt $\varepsilon \varsigma$ поu $\delta \varepsilon v$ $\theta \varepsilon \omega$ pouvtal autovontes yia to

окарчал $\omega \mu$ а，тот ε үІа ка $\theta \varepsilon \mu$ да kivnon $\mu \mathrm{as}$ a paipouvtal 15 movtol（avil yia 5 пои हival to apXiko）．$\Sigma \varepsilon$ auto tov пเvака $\mu \varepsilon$ т η к катабтаб о о а та пеठıа ката тП ठıаркеıа тои паıхvıठıои

 auदavovial，$\mu \varepsilon$ бuvereia o npwas $\mu a s$
 $\mu \varepsilon \mu \varepsilon ү a \lambda \cup \tau \varepsilon \eta$ हUко $\lambda 1 a$ ．
 $\mu \pi о р о и \mu \varepsilon$ va то а $\lambda \lambda a \xi$ ои μ апо $\tau \eta v$ apxŋ（expier ence）ka। то опоьо aukavetal ava入oүa $\mu \varepsilon$ to побо β аөıa

 μ порои $\mu \varepsilon$ va $\varepsilon к т \varepsilon \lambda \varepsilon \sigma о u \mu \varepsilon ~$ β होticuvovias tis．

「ıа пп $\lambda \cup \sigma \eta$ пои θ a бая $\delta \omega \sigma$ оu ε

 впллоүп апо олєऽ）прауна пои
 a入入aそణı pı২ıka $\eta \lambda u \sigma \eta$ tous av

anopia yupw ano ta ypayourva ins
 үраниа $\mu \varepsilon$ тія піөаveৎ апорієऽ бая
 бая аmavtпоои μ иعба апо тія бદ入ıठ६ऽ тои періоठเкоu．

H Λ Y ΣH TOY ПAIXNIAIOY

 Өицібои ε отl ε Хои $\mu \varepsilon$ va каvou $\mu \varepsilon \mu \varepsilon$ हva пaixviסı $\mu \varepsilon$ чavtaotika $\varepsilon \varepsilon \varepsilon \lambda ı ү \mu \varepsilon v a$ үра甲іка，пои а甲 η vouv єкплпкто акона каו то випгіро μ аті．H

 μ оибוко interface үıa va μ поребоици va aпо入аибоuне ола аuta та
бıачоретіка коннатіа，пои акоиуоvтаı

алла乡६ı пıӨаvotata то тєлıко окор，

 бє autn $\eta \eta$ пиароибıaбך．То бкор пои
 пробпаӨвıа вчтабє үирш бтоиৎ 450 movtous amo 500.

ката тп ठıарквıа тои паıхиıठıои．Апо auta ката ε раа μ va $\mu \varepsilon т р \eta \sigma о и \mu \varepsilon$ tou入axıбтоv ठعка ठıачоретіка кониатіа каı та опоוа аполаибанв бто впакро，акоца каі $\mu \varepsilon$ то $\mu \varepsilon ү а \varphi \omega$ vakı тои PC μ ая．

Emions va toviooune oti $\sigma \varepsilon$ auto to паıхviठı धıval акоца по ßабіко апо

отı $\mu \varepsilon$ xpl $\sigma \eta \mu \varepsilon p a$ va $\sigma \omega \zeta$ оu $\mu \varepsilon \sigma \varepsilon$ такта хроvika סıaбтпиата то паıхvıбı
 हival taktikol kal $\sigma u v \eta \theta \omega \varsigma$ крıбוцо．
 μ as σ Tnv по η tou Spielburg $\mu \mathrm{la}$ wpaıa пршіа．Р ω таиє то берірп пои
 tous npwes（ASK ABOUT HEROES），yIa tous $\lambda \eta \sigma$ I®ऽ（ASK ABOUT BRIGANDS） kal үıa to β арwvo（ASK ABOUT BARON）．
 каі тоия прштоия β а β ноия каі прохшра $\mu \varepsilon$ арібтєра ото Adventurer＇s Guild（ η Y ω via $\tau \omega \vee \eta p \omega \omega v$ ）．
Үпоүрачоинг ото ßіßлıо каі котта ε ото⿱ піvaka avakoıv $\omega \sigma \varepsilon \omega \mathrm{v}$ опои

 va үıvou ε п η р $\omega \varepsilon \varsigma \varepsilon$ ع ω tautoxpova кєрठı३оu $\mu \varepsilon$ kal $\varepsilon \mu \Pi \varepsilon ı p ı a$.

O XAPTH T T N ТОПОӨЕЕI Ω

 λ रүıa бas $\lambda \varepsilon \mu \varepsilon$ та $\varepsilon \xi \eta \varsigma$ ：
Σ то кеvtpo tou Xapti ßploketal to

 бкопои бац），арібтера апо то калиßı auto عıval to пеठıo tou kevtaupou，
 हivaı ○ $\chi \omega \rho \circ \varsigma ~ \tau \omega \vee \xi \omega \tau \iota k \omega \vee$（goblins），

 үıүаvia，трعıৎ ОӨоvєৎ ठє६ıа апо тпv

 عוбоסО tou $\chi \omega$ рiou عival o otoxos $\varepsilon \xi а \sigma к \eta \sigma \eta$ ．
 mave ame to otoxo eival to
 апо то отохо віvai о $\chi \omega \rho \circ \varsigma \mu \varepsilon$ тіৎ v $\varepsilon p a ı \delta \varepsilon \varsigma$. Mıa oӨov $\begin{aligned} & \text { kat } \omega \text { kaı } \mu \text { ıa }\end{aligned}$

 kai ठuo оӨоves apiotepa апо тіৎ

（катı μ крра хрпоıиа тріхшта 弓шакıа）．
 हival to ka $\lambda u \beta$ ı tns Baba Yaga（ $\mu \mathrm{ia}$ поגи какıа μ аүıбба）．Δ ио оӨоvєя паvш апо то ка入иßı тпs өepaneutplas عival to kaotpo tou β apwvou．
 каты апо то бтохо عıvaı то потані ка।

 kal о катаррактпя．

 nave eıval to Erana＇s Peace，av
 впаVи $\mu \varepsilon \mu$ І ठ $\varepsilon \xi ı a$ вıvaı η трипа тои Ogre ка। акона μ ৷а впаv ω हıvaı η
 ominıa tou μ ayou Kobold．

Апо тПv हıбоסо тои хшрıои каı па入ı

 oӨovn عாave عival to omitı tou μ ayou Erasmus．

Гia va т $\varepsilon \lambda \varepsilon ı \omega$ vou μ ，aпо то отохо
 арібтера，щіа оӨоv катш（пробох η
 －Өov η кать kat μ la oӨov η apıotepa ε eval to avtpo twv $\lambda \eta \sigma \tau \omega v$ ．

Епıотрвчоинв каו па入ı отпv aбүа入вıа тои $\chi \omega \rho ı$ ои тои Spielburg каı

 tou $\chi \omega$ роu ү ү a tiv kataotaon（TALK TO MAN），ß үaıvou ε а апо عкєı kal па ε бто катабтпиа $\mu \varepsilon$ та μ аүıка каı ठivoupe ASK ABOUT MAGIC．
Δ เпла бто үрачвıо тои берı甲ך вıvaı то паvбохєı0，а甲оu $\mu п о \cup \mu \varepsilon \varepsilon к \varepsilon ।$ ठivou ε ASK ABOUT ROOM，ASK ABOUT MERCHANT．Σ to $\mu a y a \zeta!~ \mu \varepsilon ~ \tau a ~$ بpouta סivoune ASK ABOUT FRUIT．इTo наүа乙！пои عıvaı ठıпла ото μ алаßıко ASK ABOUT KNIFE，BUY KNIFE，ASK ABOUT ARMOR．$\Delta ı \pi \lambda a \sigma \tau \eta \vee \tau a \beta \varepsilon p v a$ عival ε vaç $\zeta \eta$ tiavos $\varepsilon \kappa \varepsilon$ GIVE A SILVER，ASK ABOUT BRIGANDS．

Вуعıтє апо тпv по入ך каı ппүаıvєтє σ то Healer＇s Hut，$\varepsilon \xi \omega$ aпо $\varepsilon \kappa \varepsilon$ L LOOK TREE，LOOK NEST，LOOK BIRD，KNOCK DOOR．Meбa oto Hut，LOOK BIRD，ASK ABOUT POTIONS．ПךүaIvete $\sigma T 0$ kaбtpo tou ßapwvou ASK ABOUT BARON，ASK ABOUT SON，ASK ABOUT DAUGHTER，ASK ABOUT BABA YAGA， OPEN DOOR．Mraıvou $\mu \varepsilon \mu \varepsilon \sigma$ каı ппүaıvou ε б $\delta \varepsilon \xi$ ıa σ tous σ taß λ ous，
 $\tau \varepsilon \lambda \varepsilon เ \omega \sigma$ оu $\mu \varepsilon$ ठıvou $\mu \varepsilon$ REST．

So You Want To Be A Hero［score 304 of 500］

ミinv кevtpikn o日ovn tou kaotpou
 tou סıvoune TALK TO MAN，ASK ABOUT PRACTICE，GIVE GOLD COIN kaI $\mu \circ \lambda เ \varsigma ~ \tau \varepsilon \lambda \varepsilon ı \omega \sigma \varepsilon ı \eta$ $\varepsilon к п a ı \delta \varepsilon u \sigma \eta$ REST．
 кعvtaupou，omou θ a pんтпооu ε ASK ABOUT BRIGANDS，ASK ABOUT BRIGAND LEADER．
 $\omega \rho a \operatorname{kal~\varepsilon \chi \varepsilon ı~apxı\sigma \varepsilon ı~va~vuxt\omega v\varepsilon ı,~av~}$ $\mu \varepsilon І v \varepsilon t \varepsilon ~ к а ו ~ а \lambda \lambda о ~ о т о ~ ठ a \sigma o \varsigma ~ Ө a ~$

 ६६коupaotعitє σ то ठабоৎ．

Av ката тuxŋ ouvavinoete кamo！ov
 кало va то апочиүعтє（ μ пореітє va $\delta \omega \sigma \varepsilon \tau \varepsilon$ ESCAPE av $\varepsilon y \varepsilon \tau \varepsilon \eta \delta \eta$ $\varepsilon \mu \pi \lambda a к \varepsilon ı \sigma \tau \eta \mu a \chi \eta \eta$ ŋ́ RUN yıa va ६६чuүعтє үрпүора）．

Av vot ω Өt ε apketa ठuvatol va

 BODY $\omega \sigma$ tह va $\mu \mathrm{a} \zeta \varepsilon \psi \varepsilon \tau \varepsilon$ кaveva ＂$\lambda \varepsilon \varphi$ то＂парапаvш．

Апочиүعтє апо тпv архп va
 терая（баuрєৎ，ठракоия，Оүкр，Трол入 клп）үוаті हוval поли ठибко入а каı
 хабєтє пріv кала $\delta \omega \sigma \varepsilon \tau \varepsilon$ та пр \quad та Xтиппиата．

ПЕр！$\mu \varepsilon \vee \varepsilon \tau \varepsilon$ то Expierence σ а̧ va

 $\Delta \omega \sigma t \varepsilon$ пробох η kal σ т ηv
 пı ठибко入о। ano ta Goblins kaı пı धиколо апо ола та иполоाпа）．

 $\varepsilon \mu \pi 0 \rho o$, GIVE SILVER COIN，ASK ABOUT BRIGANDS каı μ о $ı \varsigma$ т $\tau \lambda \varepsilon เ \omega \sigma \varepsilon ı$ RENT ROOM ano tov mavठохعа．

Kamou $\varepsilon \delta \omega$ т $\varepsilon \lambda \varepsilon เ \omega v \varepsilon ı \eta \pi p \omega \tau \eta \mu \varepsilon \rho a$ бая бто ठабоৎ $\tau \omega \mathrm{v} \eta \rho \omega \omega \mathrm{V}$ ка। $\tau \omega \mathrm{V}$

 $\pi \lambda \eta \rho \omega \varsigma$ тп ठuvau \quad баs каı т ηv avtox η
 otaӨ $\mu \varepsilon \varsigma$ пои $\varepsilon \lambda \lambda a t \omega$ vovtal ava入oya $\mu \varepsilon$ auta пои каvetг）каı Өa عוбтє
 $\varepsilon п о \mu \varepsilon v \eta \varsigma ~ \mu \varepsilon р а \varsigma ~ п о и ~ ठ \varepsilon v ~ Ө a ~ \varepsilon ı v a । ~$ каӨо入ои عико入Еৎ．

 үıveાદ عvas a૬ıos пpんas．
$\overline{\text { Өrodóoŋ̧ Г．Ka入íkas }}$

nyteir tia TA DRIVES
 АПO TO DOS

META АПО KOПIA $\Sigma T I K H ~ \triangle O Y \wedge E I A, ~ K A T O P Ө \Omega \Sigma A T E ~$ EПITE＾OY Σ NA OPГ $A N \Omega \Sigma E T E ~ T O ~ \Sigma K \wedge H P O ~ \triangle I \Sigma K O, ~ T A ~$ SUBDIRECTORIES KAI TA APXEIA $\Sigma A \Sigma, ~ M E ~ T O N ~ T P O П О ~ П О Y ~$ ӨЕ＾ATE．O＾A ФAINONTAI ENTA三EI，MEXPI TH $\Sigma T I \Gamma M H ~ П O Y ~$ TPEXETE ENA NEO ПРОГРАMMA KAI $\triangle I A П I \Sigma T \Omega N E T E ~ O T I ~ O ~$
 YПO＾OГI Σ TE Σ EXOYN THN IDIA OPГAN $\Sigma \mathrm{EH} \Sigma K \wedge H P O Y$ $\triangle I \Sigma K O Y$ ，TA I IIA SUBDIRECTORIES KAI TON IDIO API日MO FLOPPY DRIVES．חPIN BPEӨEITE $\Sigma E ~ A П O Г N \Omega \Sigma H ~ M H ~$ ミEPONTA乏 TI NA KANETE，ANATPEETE $\Sigma T O$ DOS．

0таv вvа проүранна апаוтв тa apxعia $\delta \varepsilon \delta о \mu \varepsilon v \omega v$ tou va عival aпоӨŋкєицєva σ то drive B，ŋ́ oto subdirectory $\mathrm{C}: \backslash X Y Z$, ń oto subdirectory σ to onolo

入ol ot бk $\quad \eta \rho o t ~ \delta t \sigma k o t ~ \varepsilon x o u v ~ t \eta v ~ o v o \mu a-~$

 $\rho a, \eta \lambda \omega \sigma \eta$ үıa $\tau \eta v$ aпоцuүך o $\lambda \omega v \tau \omega V$ парапаvш ипархєו бто DOS．

TعбоधрIৎ عVто入єऽ tou DOS，ol AS－ SIGN，JOIN，SUBST kal APPEND，μ nopouv va oas ßoŋӨŋбouv，$\omega \sigma$ тє va $\xi \varepsilon \varphi \cup ү \varepsilon \tau \varepsilon$ апо тоия періорібноиц пои ипархоиV бє $\mu \varepsilon$ ріка проүра $\mu \mu$ ата．

ENTOAH ASSIGN

 рібботвра апо हva оvoцата）$\mu \varepsilon \tau \eta v$

 по тпท عкठобП 2．0）．

 лоүпя бая，алла то проүраниа пои

 $\mu п о р \varepsilon ı \tau \varepsilon ~ v a ~ \chi р \eta \sigma!\mu о п о ı \eta \sigma \varepsilon \tau \varepsilon ~ т \eta \vee ~ \varepsilon v т о-~$ $\lambda \eta$ ASSIGN yıa va opioहtع oti to ovoua
 C）θa عivaı A ．

Eтбı，капоьо проүраниа пои 弓птавı va anоӨŋкєuovtal ta apxeia oto drive A，Өа үрачеı каו Өа бıаßа弓धı апо тоv
 пробпглабп бто drive A．Фuбika，то drive C $\theta a \varepsilon \xi$ ако $\lambda о \cup \theta \varepsilon ı$ va $\varepsilon ı v a ı ~ \delta ı a \theta \varepsilon-~$
 SIGN，плпкктролоүпбт ：

ASSIGN $x=y$
Avtikataoteiote to $\chi \mu \varepsilon$ to ovoua tou drive пои 弓птавı то проүраниа ка। то у $\mu \varepsilon$ то оvo μ а tou drive пои $\varepsilon \sigma \varepsilon$ ィৎ $\theta \varepsilon$－ $\lambda \varepsilon \tau \varepsilon$ va хрпбıиопоıךӨгı．Гıа парабвıү－ $\mu \mathrm{a}$ ，av то проүра μ п пои вктвлвıта। пробпаӨعı va үра廿єı бто drive B，$\varepsilon v \omega$ ع－
 （ $\mu \varepsilon$ оvouaoıa D），Өa препєı va плпктро－ лоүךбєтє：

ASSIGN B＝D

 to drive D oav drive B ．Av $\varepsilon \sigma a y \varepsilon \tau \varepsilon ~ \tau \eta v$

va tou directory tou drive D，о́tı $\delta \eta \lambda a \delta \eta$ Өa перvatє av плпктролоуоuбatє DIR D．：Проүраниата пои عıval үра $\mu \mu \varepsilon$ ра
 B，Өa 廿axvouv yi＇auta oto RAM disk， Ө $\varepsilon \omega \rho \omega \mathrm{vta}$ о оtı ψ axvouv oto drive B ．
 катахшрクбєтє ठио vєа оvoцата $\sigma \varepsilon$ ع－ va drive ：

ASSIGN $A=C \quad B=C$
H mapanave evio η б $\quad \eta \mu a ı v \varepsilon$ ，oti o－ $\lambda \varepsilon \varsigma$ о। avapopeऽ σ ta floppy drives A kai B，өа бta入ouv бтоv бклпро ठıбко，$\delta \eta$－ $\lambda а \delta \eta$ бто drive C．

 $\lambda \varepsilon \varsigma$ onws ol FORMAT，SYS，DISKCOPY каı DISKCOMP，үıatı oı катах ω р $\eta \sigma \varepsilon ı \varsigma ~ о-~$ vо䒑at ωv ठev avayv t ε ¢．
 vто入 ωv tou DOS опшऽ عival ol BACKUP， RESTORE，PRINT，LABEL，JOIN kaı SUBST
 mota av $\delta \omega \sigma \varepsilon$ т σ^{\prime} autes to veo ovo $\mu \mathrm{a}$ tou drive．

Tis evto ε ¢ аutec μ пореוte va tis хрПблопопрбєтє ото праүнатіко оvo－

 акир $\omega \sigma \eta$ катахшр $\dagger \sigma \varepsilon \omega v$ тои т $\varepsilon \lambda \varepsilon \cup-$ таıои парабвıүнатоя өа препвı va $\pi \lambda \eta к т \rho о \lambda о ү \eta \sigma \varepsilon \tau \varepsilon$ ：

ASSIGN $A=A \quad B=B$

 $\chi \omega \rho \eta \sigma \eta \mu \pi о \rho \varepsilon і т \varepsilon$ апла va плПктродо－ үПбєाع：

ASSIGN
хшрія каніа паранєтро．

ENTO＾H JOIN

Avti va $\delta \omega \sigma \varepsilon \tau \varepsilon$ v ε o ovoua $\sigma^{\prime} \varepsilon v a$ drive，$\theta \mathrm{a} \mu$ пороибат va то каvetя va بaivetal $\sigma a v \tau \mu \eta \mu a$ tou ठevtpou $\tau \omega v$ subdirectories tou σ к λ прои ठıбкоu．Etot үіа парабвіүна，вvш то проүраниа пробпаӨعı va үра廿عı бто drive A ，т тлı－ ка θ а үра $\psi \varepsilon$ б $\sigma \varepsilon$ капоıо subdirectory tou drive C．

H evto入 η JOIN，η опоוa عıбаүعтаı үıa
 kaveı to DOS va voutoel oti to drive A عıvaı $\varepsilon v a$ aко $\eta \eta$ subdirectory tou drive C ．

 бк ппро ठєбко．

Апо to prompt tou drive $C, \pi \lambda \eta к т о$－ λ 入үŋбтє：

MD NewA

 $\sigma \tau$ б：

JOIN A：C：\NewA

DIR C：\NewA\＊．
Өa ठદıt ε हva directory tou drive A．

Av oto drive A unapxouv subdirecto－ ries，auta $\theta a \quad \varepsilon \mu \varphi a v i \sigma t o u v ~ \omega \varsigma ~ s u b s u b d i-~$ rectories tou $\mathrm{C}: \backslash$ NewA．

JOIN A：\D
इто парапаvш парабвıүиа，үıа обо COMPUTER \＆SOFTWARE／IOYNIOE 1990

 μ оvo ठıa $\mu \varepsilon \sigma$ оu tou veou path name tous （ $\delta \eta \lambda a \delta \eta$ tou $C: \backslash N e w A \backslash$ ），$\varepsilon v \omega$ to drive A
 нa бas．

Гia va $\lambda \varepsilon ו t o u p \gamma \eta \sigma \varepsilon i \quad \eta$ JOIN，θ a пр ε－
 pıopıб μ ol．To subdirectory nou θ a avti－ kataotnoeı to drive прعாधı va عıval a－
 ano to root directory．

Eпıбпs，то бuvo八о t ωv характпр ωv үıa о入о то path عival періоріб $\mu \varepsilon$ vo aпо то DOS каı ठعv препहı va uпहрßaiveı тоия 63 характпргя．$\Sigma \varepsilon$ періптноך и－ перßабпऽ то DOS Өa бая провıठопои－

 проя капоוа apxeia av ta path names عıvaı по $\lambda u \mu \varepsilon$ үа入а．

Tहлоऽ，ol $\varepsilon v \tau 0 \lambda \varepsilon \varsigma ~ B A C K U P, ~ R E-~$ STORE，FORMAT，CHKDSK，FDISK，DISK－
 $\lambda a v Ө a \sigma \mu \varepsilon v a, ~ a m p o \sigma \mu \varepsilon v a$ ń ठ εv Өa $\lambda \varepsilon ו-$
 μ oroiouvtal ol JOIN，SUBST ń ASSIGN．

ENTOAH SUBST

Av $\varepsilon \chi \varepsilon \tau \varepsilon$ subdirectories $\beta a{ }^{2}$ ous по λ－

 path names yia va avapepӨعitє $\sigma \varepsilon$ ка－

 to path name，to onoto θ q paivetal $\omega \varsigma$ $\xi \varepsilon \chi \omega р ı \sigma$ то drive．$\Sigma \tau \eta v$ праүнатькотпта，
 $\mu \varepsilon \tau а \varphi \rho a \zeta \varepsilon ı \omega \varsigma:$

C：\MyDir \YourDir\HerDir．
 үıко drive．Auto oпиaıveı отı to $\psi \varepsilon u \delta \omega$－ vu праүратікот η та бєv вıvaı．То лоүіко auto drive μ тореı va $\varepsilon \chi \varepsilon$ т ta ठıка тоu subdirectories kaı μ оvoпtatıa，опшৎ a－ крı $\beta \omega \varsigma$ каı каөє алло чибıко drive．
 үıа то парапаvа парабвıүна，пл η－ ктролоүпотє：

SUBST E：C：\MyDir\YourDir\HerDir
इто парабєьүна аито，E ठєv прєпєו va عival to tpexov drive．

otouv ones ol avtikataotaoeis nou u－ mapxouv in бтіүиך autף．Гia va aкиры－

 тŋv парацетро／D：

SUBST E：／D
 хрпбшопоіпбєтє avti tпร ASSIGN，av η
 лахıотоv．Av капоוо проүраниа Өглєı
 бто floppy drive A，о $\omega \varsigma$ ¢ $\varepsilon \sigma \varepsilon$ וৎ θ а проть－ ноибате auta va aпо日пккитоuv σ то subdirectory／WORDPRO／DOCS，$\pi \lambda \eta$－ ктролоүпотв：

SUBST A：C：／WORDPRO／DOCS
 SUBST EIval oti autn $\delta \varepsilon v$ Eival memory resident проүра $\mu \mu$ опшऽ η हVto η AS－ SIGN каı үıа то $\lambda о$ оо аuто $\delta \varepsilon v$ aпаıтвı－ тal हпıп $\lambda \varepsilon \circ \mathrm{v} \mu \mathrm{v} \eta \mu \eta$ ．

「ia in λ हוtoupyia tns SUBST عmıa入－入ovtal al ítol mepiopiohol，ol onoiol t－ oxuouv kal үıa tic umo入olnes evto
 ASSIGN，JOIN ń CHKDSK $\sigma \varepsilon$ eva drive пои $\delta \eta \mu$ וоир $\eta \theta \eta \kappa \varepsilon \mu \varepsilon$ т $\eta \vee \varepsilon$ кто $\eta \eta$ SUBST．EпıनПऽ，ka入o عival va anopeu－ Yعiє tis BACKUP кa！RESTORE，FOR－ MAT，FDISK，DISKCOMP kaI DISKCOPY，

To DOS，$\mu \varepsilon$ т $\eta v \varepsilon \kappa \delta \circ \sigma \eta ~ 3.0$ kaı $\mu \varepsilon \tau a$ ，
 drives，$\mu \varepsilon$ ovo μ a aro A $\mu \varepsilon x$ pı Z．Av kaı o

 $\theta \varepsilon \sigma!\mu a$ окт ω оvо μ ата drive，тот ε өa
 CONFIG．SYS ז ηv паракат ω عvто $\lambda \eta$ ：

LASTDRIVE $=\mathrm{H}$
 ботвра апо тріа drives μ пореітє va a－
 то то DOS عוбаүovtas：

LASTDRIVE＝C

ENTO 1 H APPEND

Eival $\gamma v \omega \sigma$ oro，oti ta subdirectories opyavavouv ta apxeia oac．O $\mu \omega \varsigma$ ，$\sigma \varepsilon$

 пiӨavo va oas ठuбко入 $\varepsilon \psi \varepsilon i$ ．Гia пapa－
 $\lambda \varepsilon \cup \varepsilon \tau \varepsilon$ б ε va subdirectory，xpeıa弓ยtaı $\mathrm{va} \varepsilon v \eta \mu \varepsilon \rho \omega \sigma \varepsilon \tau \varepsilon$ капоוо архєıо ठєठо－ $\mu \varepsilon v \omega v$ пои ßpiбкєтаı $\sigma \varepsilon$ عva a $\lambda \lambda 0$ sub－
directory．Bعßaia，$\delta \varepsilon v$ $\theta \varepsilon \lambda \varepsilon \tau \varepsilon$ va $\mu \varepsilon$ такı－

 tories бuyxpovac．

 каӨорібعтє μ Ia 入ıбта апо subdirecto－ ries，ta опоוа $Ө$ а μ пореıт va калєбєтє апо опоוоठŋпотв а入入о subdirectory．

Otav капоוо проүрациа пробпаөвı

 directory，$k a \theta \omega \varsigma$ kaı $\sigma \varepsilon$ о a ta directo－ ries mou β piokovtal otn λ iota tins AP－ PEND．Etol ta проүраниата пои β рі－ okovial ota directories ths λ ıotas ins APPEND，μ пороuv va пробпелабтоuv amo о入а та a $\lambda \lambda$ а subdirectories tou δ－ бкои kaı ano ола та uпо入oıma drives． H
 tou DOS．
 ries，плпктролоүпотє APPEND каı $\sigma \tau \eta$ бuvexeia $\delta \omega \sigma \tau \varepsilon$ ta ovouata $\tau \omega V$ direc－ tories опшৎ бто паракаты парабвıү－ $\mu \mathrm{a}$ ：

APPEND C：\SCHEDUL；D：\WP；C：\ACTS
Av $\theta \varepsilon \lambda \varepsilon \tau \varepsilon$ va $\delta \varepsilon ו \tau \varepsilon$ in $\lambda เ \sigma \tau a, \pi \lambda \eta$－ ктролоүпбтє：

APPEND
 та directories ano in $\lambda \iota \sigma$ та av $п \lambda \eta к т \rho о-~$ $\lambda о ү \eta \sigma \varepsilon \tau$ ：

APPEND ；

Av Xpeıaそとтal va $\sigma u v \delta u a \sigma \varepsilon \tau \varepsilon \tau \eta v$ APPEND $\mu \varepsilon$ inv ASSIGN η í $\tau \eta$ JOIN θa
 ठuо т $\varepsilon \lambda \varepsilon u t a l \varepsilon \varsigma ~ \varepsilon v t o \lambda \varepsilon \varsigma . ~ O \mu \omega \varsigma ~ \eta ~ A P-~$ PEND $\sigma \varepsilon \sigma \chi \varepsilon \sigma \eta \mu \varepsilon$ tis व $\lambda \lambda \varepsilon \varsigma$ ऽuo，$\sigma u-$ vepyalとtaı ка入utepa $\mu \varepsilon$ то DOS．

Пар＇ола auta оншৎ，віval протוцо－ тєро va паıрvєтє $\mu \varepsilon р і к \varepsilon \varsigma ~ п р о ч и \lambda а द \varepsilon ı \varsigma ~$
 PEND．Ta проүраццата $\delta \varepsilon v$ үv ω рi弓ouv каı $\delta \varepsilon v$ проквıтаı потв va μ аӨоuv отı ε－ va apxeio סev ßpioketal σ то трЕхоv directory，à入a $\sigma \varepsilon$ капоוо directory ins入ıotas APPEND．

Av то проүраниа $\sigma \omega \zeta \varepsilon ı$ т ηv па入ıа
 voupyıa，катı пou бu μ ßaıvعı $\mu \varepsilon$ по入入оuৎ
 mөavo va β реıг та архعıа баৎ ठıа－

Мє тп ßоךӨєıа тпऽ APPEND то про－
入ıou apxeiou oto ma入io directory kal
 oŋ tou apXeוou oto tpexov directory．
 okovtaı $\sigma \varepsilon$ ठıа $\varphi о \rho \varepsilon t ı k a$ directories， 1 －

 o λa eıval ikavoroıทtika．
 $\mu a v t i k a ~ \sigma \tau \eta v ~ \varepsilon \kappa \delta о \sigma \eta ~ 4.0 ~$ tou DOS．Гia парабعıүна，ol APPEND／X：ON каı AP－ PEND／X：OFF，$\xi \varepsilon k i v o u v ~ k a i ~ \sigma T a \mu a t o u v ~$
 $\mu \omega v$（．COM，EXE kaı ．BAT）apxeı ωv kaı apx $\varepsilon / \omega v$ ठ $\varepsilon \delta \circ \mu \varepsilon v \omega v$ ．Σ тo DOS $3 . \chi \eta$ AP－ PEND 廿axvel μ ovo yia apxeia ס६ठo $\mu \varepsilon-$ v $\omega \mathrm{v}$ ．Emıons，ol APPEND／PATH：ON kaı APPEND／PATH：OFF，入eve avtiotoixa бто DOS va $\psi a \xi \varepsilon ı$ í va $\mu \eta v \psi a \xi \varepsilon!~ ү ı a ~ a p-~$ xहוa，otav to проүра $\mu \mu$ б ठıveı हva full directory kal path name．Ako $\mu \eta, \mu \varepsilon$ t ηv
入ıota Tทร APPEND oto DOS environment．

ЕПІへОГОГ

Beßaıa，oбo xpnoıцєц kı av عıvaı oı $\varepsilon v t o \lambda \varepsilon \varsigma ~ A S S I G N, ~ J O I N, ~ S U B S T ~ k a l ~ A P-~$ PEND ठहv $\mu \pi$ пopouv va $\lambda u \sigma o u v$ o λa ta проß入пната．$\Delta \varepsilon v$ нторєьтє үıа пара－
 ६єпЕрабєтє то пров $\lambda \eta \mu$ тпऽ ठьбкєтаऽ
 va проүранната．

H ASSIGN kai η APPEND eival memory resident проүра $\mu \mu$ ата．Av ε－ үкатабтаӨоuv μ іа чора $\sigma \tau \eta \mu \vee \eta \mu \eta$ ， хрпбюнопоוouv yia tov عauto tous eva μ кро ко $\mu \mu а т і ~ т \eta \varsigma, ~ \mu \varepsilon ו \omega v o v t a s ~ т \eta ~ \sigma u v o-~$
 үраниата．Oı апаıтповıৎ tous हivaı бхعтіка μ ккряऽ（періпои 1800 каı 1400 bytes avtiotoixa），бuүкріvouعves $\mu \varepsilon$ капоіа а入入а memory resident проүра μ－ μ нта пои апаітоuv поли перібоотвр $\mu \vee \eta \mu \eta$ ．Лбтобо о $\mu \omega \varsigma$ өa $\mu \pi$ ороибє va
 on пои ol $\varepsilon \varphi a \rho \mu о ү \varepsilon \varsigma ~ \sigma a s ~ x \omega p i s ~ t \eta v ~ \varepsilon-~$ ктє入 $\varepsilon \sigma \eta$ aut $\omega \mathrm{V} \tau \omega \mathrm{V}$ हvto $\lambda \omega \mathrm{v}$ ，$\varepsilon \chi$ оuv a － крı $\beta \omega \varsigma$ т $\eta \mu v \eta \mu \eta$ поu хргıa弓оvtal．

 иперßвітє ठіачорой періорібной
 паквта software．Өa прєпع। о $\mu \omega \varsigma$ va

 drives ń subdirectories $\varepsilon \chi \varepsilon \tau \varepsilon$ ठ $\eta \mu$ ioupyn－
 проүраниата бас．
$\overline{\text { Avva Apyuporiounou }}$

 \title{
COMPUTER
 \title{
COMPUTER AEV ENAI MONO LOYMEAI！！
} LOYMEAI！！
}

ENA ПРОФНТІКО ПАIXNIDÍ ПОҮ ӨА इA乏 МЕТАФЕРЕІ ГTO ПРПӨҮПОҮРГIKO ГРАФЕIO KAI THN EAAHNIKH BOYAH．

ANTIMETRПIइTE TON COMPUTER इA乏， THN TYXH KAI THN TEXNIKH TOY，IAANIKO ГIA＇AГОNIOAH＇XEIMQNIATIKA BPADIA．

TO KATA＾AHへO ПPOГРAMMA ГIA NA三EKINHEETE NA KEPAIZETE．AKTYПHTO AN EYNAIAEOEI ME TO SUPER ПPO－ПO 2.

AN TO SUPER חPO－חO 1 इAE EAREE 12apia \＆13apia TRPA，MAZI ME TO SUPER ПРО－ПО 2 ӨА KEP $\triangle I E E T E$ ．．．EKATOMMYPIA！

software

Пヘ．ПАТРIAPXOY \＆Σ AP $\triangle E \Omega N 1$ N．ФI＾AAEへФEIA 14341
THA．25．10．788，25．18．780

（ TIA XONAPIKEE TAPATREAIEE

 ＇H ПАНРОФОРІЕЕ THAEФQNH工TE： 25．10．788，AПOTEYMATINE $\Omega P E \Sigma$ ）
ZHTHETE TA

A日HNA ：Civildata，Bı $\beta \lambda$ ．Marmaowtnpıou，Microlab，Data Shop，Computer yıa oeva，Data Format，MB Computers，Technoland，Eג．Kouvav \boldsymbol{y} ，Computer Support，Computer Market 2， MINION，Magnet，Di Micro，Eva Computers，Athens Computer Center．©EइミAAONIKH：
 tem，Computer Practica．KAI：Micropolis（KopıvӨoc），Microland（ Λ a $\mu \mathrm{Ka}$ ），Megapower

－ME ANTIKATABOAH £E 2 HMEPE ：THAEФQNHETE 25．10．788． ӨA ПАHPQ乏ETE इTON TAXY \triangle POMO．

 directory tou бк入Прои ठıбкоu пои ßpıбкетаı η हVто入П обо ка।

 Өعఠך va Өu

REN FORMAT．COM XXX．COM

 directory пои θ a $\delta \eta \mu$ וоирүПбєт．

 toupyia tou format，a入入a tautoxpova ठıvei oह onoiov to xpף－

 ото drive пои β рıбкєтаı то архعıо FORMAT．BAT kaı va $\delta \omega \sigma \varepsilon$－

Гıa va пробтатєитєıтє апо тихаıо $\sigma \beta и \sigma \mu о ~ a p \chi \varepsilon ı \omega v ~ ө a ~$
 $\omega \varsigma \varepsilon \xi \eta \varsigma:$

ATTRIB＋R ovoua apxeiou

Me autov tov тропо то архєıо ठعv Өа μ тореı va $\sigma \beta \eta \sigma$ твı．

ATTRIB－R ovoua apxeiou

 пои пробтатвибатє $\mu \varepsilon$ аutov tov тропо．

 （MOVe File），UND（UNDo）kat CANCL（CANCeL）．Av капाoıs

 ＂Bad command or filename＂．

То провлпиа $\mu \varepsilon$ аutov tov тропо віvai отı үıa va үıveı η
 MS－DOS．H عvto η aut η 入eıtoupyeı μ оvo $\mu \varepsilon$ apxعia．Oı COPY，
 $\lambda \varepsilon \varsigma$ поu β pıбкоvtal $\mu \varepsilon \sigma \alpha \sigma$ бо архモıо COMMAND．COM．Гıa v＇
 ＂$\mu \pi \varepsilon เ \tau \varepsilon$＂$\mu \varepsilon \sigma a$ бто архєıо COMMAND．COM，va ßрєıтє бє поוо

ECHO OFF
CLS
ECHO
ECHO ПPOミOXH．．．H $\triangle I A \triangle I K A \Sigma I A ~ F O R M A T ~ Ө A ~$
ECHO KATA $I T P E \Psi E I ~ O \wedge A ~ T A ~ \triangle E \triangle O M E N A ~ \Sigma A \Sigma!~$
ECHO
｜F＂$\% 1^{1}=={ }^{*}$ GOTO END
｜F＂\％1＂＝＝＂c＂GOTO END
IF＂\％1＂＝＝＂C＂GOTO END
\％1：
DIR／W
ECHO
ECHO ӨEムETE इIIOYPA NA ПPOX OPH乏ETE $\Sigma T H$ ECHO $\triangle I A \triangle I K A \Sigma I A ~ F O R M A T ~ Г I A ~ T O ~ D R I V E ~ T$
ECHO AYTO；AN NAI ПATHETE ENA ПАHKTPO， ECHO A $\wedge \wedge I \Omega \Sigma ~ \Pi A T H \Sigma T E ~ C T R L-C . ~$
ECHO

PAUSE

C：
REM（ $\Sigma H M E I \Omega \Sigma H: \Sigma T H N ~ П A P A П A N \Omega ~ Г Р А M M H$ REM TOMOӨETH Σ TE TO DRIVE KAI PATH REM ПOY BPIEKETAI TO BATCH FILE） XXX \％1
GOTO END1
：END
ECHO $\Sigma Y Г N \Omega M H ~ A \wedge \wedge A ~ \triangle E N ~ M П O P \Omega ~ N A ~ П P O X \Omega P H \Sigma \Omega ~$ ：END1

Проүра μ а 1

1 A：\DEBUG COMMAND．COM \｛ПEPIMENETE MEXPI NA EMФANILTEI－\}
 2 －S CS：100 FFFF＇COPY＇
 3 XXXX：4D48
 4 XXXX：8488
 5 －E4D48 4D 4F 5646
 6 －E8488 4D 4F 5646
 7 －S CS：100 FFFF＇DEL＇
 8 XXXX：4D32
 9 XXXX：8472
 10 －E4D32 55 4E 44
 11 －E8472 55 4E 44
 12 －S CS：100 FFFF＇ERASE＇
 13 XXXX：4D29
 14 XXXX：8469
 15 －E4D48 43414 E 43 4C
 16 －E8488 4341 4E 43 4C
 17 －W \｛EIIALETE AYTO KAI ПEPIMENETE MEXPI NA ミTAMATHEEI TO DRIVE\}
 18 －Q

ミхпиа 1

ठıка $\sigma a \varsigma$ оvоната（ $\delta \eta \lambda a \delta \eta$ va $a \lambda \lambda a \xi \varepsilon \tau \varepsilon$ та a bytes）．Гia va үıveı auto umapxouv ठио тропоı．О прютоs عıvaı

 $\sigma \varepsilon \chi$ оvtas o $\mu \omega \varsigma$ о api $\theta \mu$ os $\tau \omega v$ xapaktпp ωv tou veou ovo μ a－

 tou DOS п́ капоьо оvоца пои Өа хрクбıцопоьоибатє үıa عva ठıко бац архعıо．

 vtal kal σ то σ х $\eta \mu \mathrm{a} 1$.

 то проурацца DEBUG．COM бiŋv кaıvoupia ठıбкета．Каvtє в－
 пहрı $\lambda a \mu \beta a v o v t a ı ~ t a ~ a p \chi \varepsilon ı a ~ C O M M A N D . C O M ~ к а ı ~ D E B U G . C O M . ~$.

 хєıа плпктролоүпотє та $\delta \varepsilon \delta о \mu \varepsilon v a$ опшৎ та $\beta \lambda \varepsilon п \varepsilon \tau \varepsilon ~ \sigma т о ~$ $\sigma \chi \eta \mu a 1 . \mathrm{M} \eta \vee \pi \lambda \eta \kappa т \rho о \lambda о ү \eta \sigma \varepsilon \tau \varepsilon$ та vou $\mu \varepsilon \rho a \tau \omega v$ үра $\mu \mu \omega v$ ，ou－

 $\delta \omega \sigma \varepsilon$ то prompt（ $\delta \eta \lambda a \delta \eta$ тпv паила，－）．ПЛ $\eta к \tau \rho о \lambda о ү \eta \sigma \tau \varepsilon$ та u－ полоıпа каı патпотє Enter．Ot үрациєऽ 3，4，8，9， 13 каı 14 є μ－

 Oı apıӨرоь пои aко入оиӨouv то XXXX，ठıа甲

 $\mu \varepsilon \varsigma 3$ каı 4 ع $\mu \varphi$ avı ζ ovtal $\omega \varsigma ~ \varepsilon \xi \eta \varsigma: ~$

XXXX：3C42

XXXX：8408
 Xouv $\tau \eta \mu \circ \rho \varphi \eta$ ：

－E3C42 4D 4F 5646

－E8408 4D 4F 5646

 ६ท COPY кaı ta vou

 бто DOS．

 Av катı $\delta \varepsilon v ~ п а \varepsilon ı ~ к а \lambda а ~ \varphi о р т \omega \sigma т \varepsilon ~ \xi а v a ~ т о ~ D O S ~ к а ı ~ а р х ı б т \varepsilon ~$
 бт va кратпоєт ε va COMMAND．COM пои $\delta \varepsilon v$ عıvaı a入入аү－ $\mu \varepsilon v o$ ов капола ठıбквта．

Хрŋбтоя Пıүкая

Av $\varepsilon \chi \varepsilon \tau \varepsilon$ опоוабŋпотє апоріа $\sigma \chi \varepsilon$ тเка $\mu \varepsilon$ то MS－DOS каı

 бая ßопөпооuиع．

10 －COMPUTER CENTER

TתPA KAI ETHN N．IQNIA OTI חIO KAINOYPIIO ETON KOEMO TIN COMPUTERS

32 BIT COMPUTERS

AMIGA B2000
AMIGA 500
ATARI 1040 STFM ATARI 520 STFM ACORN ARCHIMEDES 3000

PERSONAL COMPUTERS

SCNEIDER EUROPC XT SCHNEIDER AT ATARI PC PC，COMPATIBLES

ПЕРІक्アPEIAKA

DIGI VIEW GOLD V4．0（NEO）
AMIGA SAMPLERS
AMIGA MIDI INTERFACES
AMIGA 2 MB MEMORY EXPANSION （EXTERNAL）
AMIGA 2 MB MEMORY EXPANSION （INTERNAL）
AMIGA GENLOCKS
HARD DISKS（AMIGA，PC）
 COLOR MONITOR COMMODORE 1084P COLOR MONITOR PHILIPS CM 8833 STEREO EKTYП®TE STAR，CITIZEN

MEГAへE天 MPO乏のOPE

AПOETEAOYME KAI ETHN ETIAPXIA
1．HPAKAEIOY 269 －IONIA CENTER－TH＾． 2776751

H $\Sigma X E \triangle I A \Sigma H ~ П A P A \Sigma T A \Sigma E \Omega N \Sigma T H N O \Theta O N H$ TOY ҮПО $О Г І \Sigma Т Н ~ А П А І Т Е І ~ T H ~ X P H \Sigma H ~ E I \Delta I K \Omega N ~ \Sigma X E \Delta I A \Sigma T I K \Omega N ~$ ПАКЕТ』N，ТА ОПОІА ПАРЕХОYN $\Sigma Y Г К Е K P I M E N E \Sigma ~$ $\triangle I E Y K O \wedge Y N \Sigma E I \Sigma$ KAI AП＾OПOIOYN $\Sigma E ~ M E Г А \wedge O ~ B A Ө M O ~ T O ~$ EPTO TOY XPH Σ TH．EMEI Σ इA $\Sigma ~ \triangle I N O Y M E ~ E N A ~ T E T O I O ~$ ПРОГРАММА ФТІАГМЕNO EIDIKA ГIA TON AMSTRAD 6128 ME THN E＾ПI \triangle A OTI ӨA AФYПNI $\Sigma O Y M E ~ E \Sigma T \Omega ~ K A I ~ А I Г O ~ T O ~$ KAヘヘITEXNIKO $\Sigma A \Sigma$ EN $\Sigma T I K T O$ ．

Iε auto to teuxos oas mapou－ бıа弓оицє عva проүрациа то опоьо μ порвı аvвта va апотв－
 т ω V．．．ка入入เteXVIK ωV баৎ ε－

 גoupynoouv．
 бпиіоирүпиатьv баs өа хрпбщопоıп－

 тія паракатн $\lambda \varepsilon$ втоирүı६ৎ：
Fire Button：Evap६ $\quad \sigma \chi \varepsilon \delta ı a \sigma \eta \varsigma ~ ү р а \mu \mu \eta \varsigma$ Fire Button（ $\delta \varepsilon u \tau \varepsilon \rho \eta$ 甲ора）：Т $₹ \lambda \circ \varsigma ~ \sigma \chi \varepsilon$－ бıäךs үрацдךऽ
B：Проб ω рıv $\begin{aligned} & \text { ठıакоп } \\ & \sigma \tau \eta ~ \sigma \chi \varepsilon \delta ı a \sigma \eta ~\end{aligned}$ үра $\mu \mu \eta \varsigma$
E：Тعлоৎ $\sigma \chi \varepsilon \delta ı a \sigma \eta \varsigma ~ т \mu \eta \mu a t o \varsigma ~$

F：Tعлоৎ عıkovas

 FILL

Апо тп бтıүип пои вхєı орıбөєı η ap－
 Өвıа тои квроора va тп $\mu \varepsilon$ такіvєıтє па－

 т η топоӨєтпбєтє．

Пatwvtas to fire button，＂φ ו ${ }^{\text {aper }}$＂
 проүраниа єıval єदаıрєтіка практько
 μ וоupүクनєtє DATA FILES $\mu \varepsilon \sigma \chi \varepsilon \delta \iota a$ ठио ठıaбtaбe $\omega \mathrm{v}$ ．

Auta μ ropouv oin ouvexeia va xpn－

 рібтрачоuv к．ג．п．

Tعтоіа праүраниата өа пароибıа－

10 REM
11 REM－－．DRAWING PROGRAM－－
13 REM
$100 X=320: Y=200$
110 GOSUB 1100
120 GOSUB 1500
130 GOSUB 1600
135 GOSUB 3500
140 GOSUB 180
150 GOSUB 230
160 GOSUB 340
170 GOTO 140
178 REM
180 REM－－－CURSOR ．－
182 REM
$190 \mathrm{X} 1=\mathrm{X}-\mathrm{CS}: \mathrm{Y} 1=\mathrm{Y}-\mathrm{CS}: \mathrm{X} 2=\mathrm{X}+\mathrm{CS}:$
$Y 2=Y+C S$
200 MOVE X1，Y
205 DRAW X2，Y，1，1
210 MOVE X，Y1
215 DRAW X，Y2，1，1
217 K $\$=$ INKEY $\$: I F$ K $\$=$＂Z＂THEN
GOSUB 4000
220 RETURN

228 REM
230 REM－－MOVE CURSOR－－
232 REM
240 Y $3=Y: X 3=X$
250 IF JOY $(0)=0$ THEN 310
260 IF $\mathrm{JOY}(0)=1$ THEN $\mathrm{Y}=\mathrm{Y}+\mathrm{SS}$ ：
GOTO 310
270 IF JOY $(0)=2$ THEN $Y=Y-S S$ ：
GOTO 310
280 IF JOY $(0)=4$ THEN X＝X－SS：
GOTO 310
290 IF JOY $(0)=8$ THEN $X=X+S S$ ：
GOTO 310
310 MOVE $X 3, Y 2$
320 DRAW $\mathrm{X} 3, Y 1,1,1$
325 MOVE X1，Y3
326 DRAW X2，Y3，1，1
330 RETURN
338 REM
340 REM－．－LINE MANIPULATION－－ 342 REM
350 A $\$=$ INKEY $\$$
355 IF A $\$=$＂＂AND JOY（ 0 ） 16 THEN
IF FL＝O THEN RETURN
370 IF JOY $(0)=16$ AND $\mathrm{JY}=1$ THEN
JY＝2：LOCATE $1,1: P R I N T " S ": G O S U B$
3000：GOTO 430
$380 \mathrm{IF} \mathrm{JOY}(0)=16$ AND $\mathrm{JY}=2$ THEN
JY＝1：LOCATE $1,1:$ PRINT＂F＂：GOSUB
3000：GOTO 460
390 IF A $=$＝＂B＂THEN JY＝1：GOTO 450
400 IF $A \$=$＂E＂THEN $S E=1: J Y=1:$
GOTO 460
410 IF FL＝0 THEN RETURN
420 GOTO 650
$430 \mathrm{X} 1=\mathrm{X}: \mathrm{Y} 1=\mathrm{Y}$
$440 \mathrm{FL}=1$ ：RETURN
$450 \mathrm{Fl}=1$
$460 \mathrm{XF}=\mathrm{X}: \mathrm{XF}=\mathrm{Y}$
480 MOVE X1，Y1
485 DRAW XF，YF
490 NPTS $=$ NPTS $+1: \mathrm{NA}=\mathrm{NA}+1: \mathrm{LI}=\mathrm{LI}+$
$1: L B=L B+1$
$500 \times P(N A)=X F: Y P(N A)=Y F$
$510 \mathrm{XP}(\mathrm{NA}-1)=\mathrm{X} 1: \mathrm{YP}(\mathrm{NA}-1)=\mathrm{Y} 1$
560 LN（1，LB）＝NA－1
570 LN $(2, L B)=N A$
580 IF $\mathrm{Fl}=1$ THEN NA $=\mathrm{NA}+1: \mathrm{F} 1=0$
590 IF $S E=1$ THEN $S 1=S 1+1: S(1, S 1)=$
LPTS－L1：S（2，S1）＝NPTS1：S（3，S1）＝0：
GOTO 690
630 FL＝0：RETURN
$640 \mathrm{FL}=0$
648 REM
650 REM－．－DRAW LINA ．－
652 REM
660 MOVE X，Y
665 DRAW $\mathrm{X} 1, Y 1,1,1$
670 MOVE X，Y
675 DRAW X1，Y1，1，1
680 RETURN

690 REM
710 FOR I=S $(1, \mathrm{~S} 1)$ TO S(2,S1) 730 MOVE XP(LN(1,1)),YP(LN(1,1)) 735 DRAW XP(LN(2,l)),YP(LN(2,1)),1,0 740 NEXT I
750 K $\$=$ INKEY $\$: L O C A T E ~ 1,2: ~$
PRINT "ANOTHER SEGMENT?"
755 IF K\$"F" AND K\$"S" 750
757 LOCATE 1,2:PRINT""
770 IF K $\$=$ "F" THEN 800
$780 \mathrm{LI}=0: \mathrm{FL}=0: \mathrm{SE}=0: \mathrm{NA}=\mathrm{NA}+1$
790 RETURN
798 REM
800 REM ... SAVE DATA .-
802 REM
810 OPENOUT N\$
840 WRITE9,NA
850 FOR I=1 TO NA
860 WRITE9, XP(I)
870 WRITE9,YP(I)
880 WRITE9,LB
890 FOR I=1 TO LB
900 WRITE9,LN(1,I)
910 WRITE9,LN(2,I)
920 WRITE9,S1
930 FOR I=1 TO S1
940 WRITE9,S(1,I)
950 WRITE9,S(2,I)
960 WRITE9,S(3,I)
965 NEXT I
970 CLOSEOUT
980 END
1100 REM
1104 REM -.. FILE NAME --
1106 REM
1110 INPUT"DATA FILE NAME?"N\$
1120 CLS
1125 RETURN
1500 REM
1505 REM -- SET VARIABLES --
1507 REM
1508 CS=2
1509 SS=2
1510 FL=0:NPTS=1:NA=1
1520 LB=0
$1530 \mathrm{SE}=0$
1540 S1=0
1550 F1=0
1560 L1=0
$1570 \mathrm{JY}=0$
1580 RETURN
1600 REM
1610 REM -.- ARRAYS .-
1620 REM
1630 DIM XP(500)
1640 DIM YP(500)
1650 DIM LN $(2,500)$
1660 DIM S $(3,100)$
1680 RETURN
2990 REM
2995 REM ---TIME DELAY --

PROGRAMMING

2997 REM
3000 FOR I=1 TO 200:NEXT I:RETURN 3490 REM
3495 REM ---SET BOARD.-
3497 REM
3500 LOCATE 13,1:PRINT"SKETCH
PROGRAM";
3510 LOCATE 1,24:PRINT"
FIRE=START/FINISH
LINE B=BREAK LINE"
3520 LOCATE 1,25:PRINT" F=FINISH
S=NEXT SEG END SEG"
3530 MOVE 0,50
3540 DRAW 640,50
3600 RETURN
3990 REM
4000 REM ---FILL ROUTINE--

4010 REM
4020 INK 2,3:INK 3,12
4030 K \$ =INKEY\$
4040 IF K $\$=$ "" THEN 4030
4050 IF K $\$=$ "1" THEN FILL 1
4060 IF K $\$=$ " 2 " THEN FILL 2
4070 IF K\$="3" THEN FILL 3
4080 RETURN
Опнऽ $\varepsilon ı п а \mu \varepsilon ~ к а ı ~ \sigma т \eta v ~ a p x \eta, ~ \sigma \varepsilon ~ \varepsilon п о-~$ $\mu \varepsilon v a$ teux η tou перıобıкоu θ а бая $\delta \omega$ боицв μ а бвіра апо проүра $\mu \mu$ ата та onoia Өa oas $\delta \omega \sigma$ ouv in סuvatotnta
 роибіабанє бє аито то твихоऽ. Үпоцоv η 入ornov!
$\overline{\text { Гıшруос Котбıрая }}$

XPH CH KAI ЕФАРМОГЕГ THГ TURBO PASCAL

5.0 \＆ 5.5

ミYГГРАФЕАЕ：Michael Yester EKオOEEIE：M．Гкıoupठаऽ EEAIAEE： 695

 каvotntes．）ouvסuaguos tou otaסıa－

 ins Turbo Pascal 5．5．

В $\eta \mu \mathrm{a}-\beta \eta \mu \mathrm{a}$ өа $\mu \mathrm{a} \mathrm{\theta} \mathrm{\varepsilon т} \mathrm{\varepsilon} \mathrm{va} \mathrm{\delta пиюоиру} \mathrm{\varepsilon ו-}$ тє үрпүора каі Ібхира проүра $\mu \mu$ ата． To Xpクoŋ kal Eqaphoyes ths Turbo Pascal θa бaç $\delta \iota \delta a \xi \varepsilon ı$ in $ү \lambda \omega \sigma \sigma a$ Pas－ cal，прштокол入а каı auбтпргऽ тєХvıкєऽ проүраниатібнои．

 voŋtn avapopa otis ठıaסıkaбıes kal

 характпріотіка періßа入入оvтоऽ İऽ Turbo Pascal．Maөعtє п $\Pi \varsigma$ va．．．
 Turbo Pascal
 μ атıб彷
－Δ เахعıрıろعбтє архعıа каı катало－ yous
 үрацік ω v
 sembly үıa va пробпг入aбєтє pouti－ ves tou BIOS kaı tou DOS
－Апокшठікопотвıтв та проүраниата oas
－Xрпблиппоєєтє inv Turbo Pascal $\sigma \varepsilon$ $\mu 0 v i \mu \alpha \sigma \pi \eta v \mu v \eta \mu \eta$（memory resident） проүраниата．
To $\beta ı \beta \lambda ı$ апе а
 тіб $о$ о о Turbo Pascal апо tous пио ар－ xapious $\varepsilon \omega \varsigma$ tous плعоv прох $\omega \rho \eta \mu \varepsilon$－ vous．Пр由tapxikos tou oкопоц عival va $\varepsilon \xi \eta \gamma \eta \sigma \varepsilon$ п $п \omega \varsigma$ леוтоupyouv ta проүран－ Mata tns Turbo Pascal kaı oxı va mapou－
 kal kavov ωv ．

ЕГXEIPIDIO XPHटHट TOY DOS

£YГГРАФЕАЕ：Jubb Robbins EK \triangle OEEIE：M．Гкıoupסas EEAIDEE： 705

To $\beta ı \beta \lambda ı$ аито $\varepsilon \times \varepsilon ⿺$ т $\omega \rho$ а in $\mu \circ \rho \varphi \eta$
 каӨарпя，бuүкрот $\eta \mu \varepsilon v \eta \varsigma, \varepsilon v \eta \mu \varepsilon \rho \omega \mu \varepsilon$－

COMPUTER \＆SOFTWARE／IOYNIOE 1990
$\chi \omega \rho \eta \mu \varepsilon v \varepsilon \varsigma \tau \varepsilon \chi$ vikes $\tau \omega v$ ava $\lambda u \tau \omega v \sigma u$－

 $\mu a t i k \omega v$ про $\beta \lambda \mu a \tau \omega v$ үıa va $\delta \eta \mu$ оир－
 va $\lambda \varepsilon เ п \varepsilon เ ~ а п о ~ k a v e v a ~ \chi p \eta \sigma t \eta ~ t o u ~ D O S . ~$.

 О $\lambda \omega V \tau \omega V$ हпıп $\delta \delta \omega V$ ．

H evorita 1，yıa tous apxapious，हו－

Hevotnta 2 हival $\mu \mathrm{ia}$ autovou na－

 λ ouv va $\varepsilon \mu \beta a \theta u v o u v, \mu \varepsilon$ ка入u \quad П avtik ε－ $\mu \varepsilon v \omega v$ оп $\omega \varsigma$ ：
－ta avtıypapa aбүа入ぇıas каı η ava－ $v \eta \psi \eta$ апо катабтрочєऽ
－ol हпiлоүعऽ ठıа $о р \varphi \omega \sigma \eta \varsigma ~ к а ı ~ \varepsilon к к ı-~$ vnons
－ta вva入入актıка плпктролоүıа каı ouvo λ a xapaktnpwv．
Hevotnta 5 aпعuӨuvetal $\sigma \varepsilon$ ठuvaцı－ kous Xpクotes kal ava入ute¢ бuбinua－ $\tau \omega \vee \mu \varepsilon$ 入हпто $\mu \varepsilon \rho \eta$ ava入uoŋ прох $\omega \rho \eta$－
 $a \rho x \varepsilon ו \omega v$ о $\alpha a \delta \omega v \varepsilon$ vto $\lambda \omega v$ ．

Перілацßаvovtaı полла полиплока

－in ठпщıоирүıa 入ı $\sigma t \omega v$ हvto $\lambda \omega$ v каı o－

 RAM
－тпV вруабіа $\mu \varepsilon$ проүрациата коוvクя
 $\sigma \tau \omega \mathrm{V}$ ．
 $\sigma \varepsilon \tau \varepsilon$ то $\varphi p a y \mu a \tau \omega \vee 640 \mathrm{~K}, \varepsilon к \tau \varepsilon \lambda \omega v \tau a \varsigma$ to DOS $\mu \varepsilon$ to Windows，kai $\pi \omega \varsigma$ va xp η－ бוцопогя тє проүраниата тои DOS бто OS／2．

Hevotnta 7 eıval evas олокл $\eta \rho \omega \mu \varepsilon$－

 $\mu \varepsilon р \eta$ ．इто пршто $\mu \varepsilon р о \varsigma ~ " M a Ө a ı v o v t a s ~$ т $\eta \vee$ Turbo Pascal＂ava入uel－yıa tous $\mu \eta$

 бла проүра μ атібнои $\beta \eta \mu а-\beta \eta \mu а$ ．

इто бвитвро μ кроя＂Проүраниать－

 пектабп тои λ हוтоирүікои оибтпиатоऽ каı єпıø μ aivovial ol tропоו $\mu \varepsilon$ tous о－ поוоия $\mu п о р \varepsilon і т є ~ v a ~ ү р а ч є т є ~ п р о ү р а \mu-~$ $\mu a t a ~ \pi o u ~ v a ~ \chi \rho \eta \sigma ı \mu о п о ו o u v ~ k a l ~ t \eta v ~$ Turbo Pascal kal to DOS бто $\mu \varepsilon$ үубто тои ठuva $\mu \mathrm{k}$ ко tous．
Σ то тріто $\mu \varepsilon \rho \circ \varsigma$＂Прохшрпиєvєऽ тє－
 баүшүך бє орібнеves апо тія пропү－
 Өعtદı η Turbo ${ }^{\text {nascal．}}$

TO EГXEIPIAIO TH乏 GW BASIC

EK \triangle OEEIE：NERN TEXNO＾OTIQN EEAIDEE： 330

H Microsoft GW－BASIC عival $\mu \mathrm{l}$ a
 $\varepsilon к \mu a \theta \eta \sigma \eta$ тŋऽ ү $\lambda \omega \sigma \sigma$ а проүра $\mu \mu$ а－

 бцous．

 BMPC η GW－BASIC YIa tous ou μ ßatous
 vovtal o入es ol סıatayes（commands），ol

 $\sigma \varepsilon I \varsigma$（functions）Th

H $\varepsilon \kappa \delta \circ \sigma \eta$ tクS GW－BASIC eival η т ε－入عutala 3.22 ，a $\lambda \lambda$ a ε xouv пробт $\varepsilon \theta \varepsilon$ кıal vعоtгра отоוхعia mou a popouv tous veous tunous oӨovns VGA kal MCGA．

 pعا ol OEM катабкعuaбt६ৎ оuرßatwV u－ полоүוот ω 人 $\sigma \varepsilon$ ठıачорєऽ вүкатабта－ $\sigma \varepsilon$ IS ths $y \lambda \omega \sigma \sigma a s$ ．

То β ı $\beta \lambda ı$ по пеі λ а $\mu \beta$ аveı тріа $\mu \varepsilon \rho \eta$ каı हva парарт $\eta \mu a$ ．इто $\mu \varepsilon \rho \circ \varsigma A^{\prime} \mu \varepsilon$ тітло

 BASIC，ol tропоו 入हוтоupyias tךs，η ठо－ $\mu \eta \tau \omega v \pi \rho о ү р а \mu \mu a \tau \omega v$ каו $\pi \omega \varsigma$ аuta $\delta \eta \mu$ oupyouvtal kal δ ıop $\theta \omega$ vovtal．
Σ то $\mu \varepsilon \rho \circ \varsigma$ В＇avamtuбооvial ta＂Ba－

 $\mu \varepsilon \tau а \beta \lambda \eta \tau \varepsilon \varsigma$ ，ol т $\varepsilon \lambda \varepsilon \sigma \tau \varepsilon$ ка। ol $\varepsilon к \varphi p a-$

 $\lambda \varepsilon \varsigma$ kal ouvapinoeis tns $\gamma \lambda \omega \sigma \sigma a \varsigma ~ \mu \varepsilon$ алßаßŋтікп бвіра．ТЕлоৎ ото парартп－ μa паратıӨоvtal ола та $\mu \eta$ vu μ ата λ а－
 ynon．

Н ЕРГАへЕIOӨНKH TOY DOS

ᄃYГГPA PEA ：Paul Somerson EK $\triangle O \Sigma E I \Sigma: K \lambda \varepsilon ı \delta a \rho I \theta \mu \circ \varsigma$
 EEAIAEE： 612

इто вукиро аито паквто β に－
 поия үıa va ठа $\mu a \sigma \varepsilon$ т－X ω ріৎ копо－о－
 Oı коıvol Xpクбтes θ a үıvouv हıठıкol，кaı
 $\sigma \varepsilon$ v \quad и $u \eta$ ．

 Xvaбرat $\sigma \varepsilon \omega \mathrm{v}$ ．

इav апотєлєб $\mu \mathrm{a}$ ，прокиптєı η пוо
 ßоu入є̧ каı μ ибтıка тоu PC каı t ω v бu μ－ $\beta a \tau \omega v$, пои пароибıаотךкє потє．

То паквто $\beta ı \beta \lambda ı$ ıи／проүра μ ат ωv
 pouv in ठоu入દia σ as $\mu \varepsilon$ tov uno入oyıoin

каі inv пробарноүп tou оuбinuatos бтіs avaүкєऽ бая．
$\Sigma \tau a$ квчa入ala $\tau \omega v 2$ то $\mu \omega$ v tou θa ßрعاєદ：
－Mútika yıa סıokous kaı apxeıa．
 ठıatayes tou DOS．
 tous xapakinpes．
－Tропоuc yıa va＂ठa yo ANSI．
 ap×عi $\omega \vee$（batch）．
－ТахиठактU入оирүі६ৎ $\mu \varepsilon$ то перıßа入－ $\lambda 0 v$ kal $\ddagger \eta v \mu v \eta \mu \eta$ ．
－Mútıka t ω v xp $\omega \mu a t \omega v$ каı $\tau \omega v$ oөo－ $\mathrm{v} \omega \mathrm{v}$ ．
Өa $\mu a \theta \varepsilon \tau \varepsilon \pi \omega \varsigma$ va auそavete $\Pi \eta v a-$ поठоon tou DOS，опшৎ akpiß ω ¢ kavouv ol हiסıkot kal va kavete to ouotima oas

 тона проүраниата бє ठіс－\therefore ：п пои
 tou бuбinuaros σ ая．Ta naviбxupa au－
 in δ Iaxelp：$\eta \eta$ T ωv apx tou бкגпрои ठıбкоu，баs סıvouv tov ε－

 $\varepsilon \rho ү a \lambda \varepsilon i a ~ o п \omega \varsigma ~ \varepsilon v a ~ a v a \delta u o \mu \varepsilon v o ~ \eta \mu \varepsilon-~$
 μ ка картєлоөпкп，μ Ia ат乙धvia cuvavin－

HAMIGA $\sigma u v \varepsilon \delta \varepsilon \sigma \varepsilon$ то оvo $\mu \mathrm{a}$ тПऽ $\mu \varepsilon$ tov $\chi \omega \rho \circ$ tou animation
 kal computer graphics $\sigma \times \varepsilon \delta 0 v$ апо тпv архŋ тпऽ пароибוая тпऽ．Тобо бıарпилттка обо kaı ouбıaбtıka η tav kaı ε evaı o uno入o－ үוбтыs $\mu \varepsilon$ вабіко пробоv тои tov тро－
 $\mu \omega \varsigma$ оп $\omega \varsigma \sigma \chi \varepsilon \delta \circ \vee \sigma \varepsilon$ ка $\theta \varepsilon$ то $\mu \varepsilon a$ т $\tau \varsigma \varepsilon$－
 animation ol taxutites عıvaı по $\quad \mu$ и μ үа－
 tou $\mu \eta$ Хаv $\eta \mu a t o \varsigma ~ \mu \varepsilon \chi \rho!~ \sigma \eta \mu \varepsilon \rho a ~ \varepsilon \chi o u v ~$ үıvєı $\mu \varepsilon$ үалєя пробпаөєıєऽ каı проо－
 $\mu \varepsilon$ avaлоүа проүраниата каı вчарно－ Y¿c．

Та перібботвра апо та пакєта про－

 бia kaı ßpiokoviaı σ inv $\mu v \eta \mu \eta$ ．Eivaı auto пои ovo μ दои $\mu \varepsilon$ frames．Мв ठıа甲о－

 $\lambda a \mu \beta a v o u v \mu$ ккро хшро $\mu v \eta \mu \eta \varsigma$ ．Etб！
 μ атоц μ поороuv va＂паıх Өouv＂$\mu \varepsilon у а \lambda \varepsilon \varsigma$ бعıрея апо frames σ av μ ıа $\mu о \rho \varphi \eta$ кı－ vou $\mu \varepsilon v \omega v \sigma \chi \varepsilon \delta t \omega v$ ．
 вıvaı mapa μ ла бєıра апо вıкоvєऽ пои проßа入оvтаı $\mu \varepsilon$ тахитпта періпои 24 а－
 kıvŋoŋ．Eta проүра $\mu \mu$ ata animation η
 $\rho \varepsilon ı$ va $\varphi \theta$ aбeı kaı tıৎ $30 \varepsilon \omega \varsigma ~ 50$ то ठદu－

 $\sigma \times \eta \mu a t \omega v$ ，nou kivouvtai $\sigma t \eta v$ oӨov η а入入аそоvtac，$\sigma \chi \eta$ а каı $\mu о \rho \varphi \eta \mu \varepsilon \beta a \sigma \eta$
 Eva koıvo б $\eta \mu \varepsilon ו$ avapopas каı үıа тıs

TEXNIKES ANIMATION

 ANIMATION H AMIGA KATEXEI MIA 三EX Ω PIITH ӨELH． AПOTE＾EEMA EINAI इHMEPA H AMIGA NA EXEI MIA АРКЕТА П＾ОҮГIA ¿Ү＾＾ОГН ПРОГРАММАТ KAӨENA EXEI KAI $\triangle I A Ф O P E T I K A ~ П P O \Sigma O N T A ~ K A I ~$ E＾ATTRMATA．A乏 $\triangle O Y M E ~ П O I E \Sigma ~ E I N A I ~ O I ~$ इHMANTIKOTEPE

Акон η kai otav η taxutnta eivai ıkavo－

 vоৎ пои μ пореı va ठıаркєбєı $\mu \mathrm{Ia}$＂taı－ via＂ε ıval μ וкроऽ．

Auto $\sigma \eta \mu$ аıv ε в ε трра кобтоऽ $\mu \varepsilon$ апо－
 впाтuхıas вvos проүра μ атоৎ va про－
 $\lambda \cup \tau \varepsilon \rho о u$ api $\theta \mu$ оu вікоvळv поu va μ то－ pouv va пaıxӨouv бuyxpovшs кaı $\chi \omega$－

 $\tau \omega \nu \sigma \tau \eta \vee$ палета тои animation．Auto a－ чаıргı $\lambda \varepsilon п т о \mu \varepsilon р \varepsilon ı а ~ а п о ~ т \eta v ~ о Ө о v \eta ~ а \lambda-~$ ла пробӨعтєє по入итіцо хроvо，ठıарквıа σ то $\theta \varepsilon \mu$ a．

Eidika oinv AMIGA ta проүра $\mu \mu$ ara tou عıסоu̧ μ пороuv va XwpıбӨouv kaı $\mu \varepsilon \beta a \sigma \eta$ हva a入入о крітпріо：То av uпо－ oinpı২ouv animation $\sigma \varepsilon$ ठuo ń tpeıৎ ठıa－

 тв．Пароибıа弓оицв паракатн μ ла бвı－ ра апо проүраниата пои μ пороиv vai－

DELUXE PAINT III

Eva ovoна пои үıа по入入оus опцаі－

عixav oinv AMIGA．इinv te入eutaia tou
 по ठиvatотптеऽ пои μ пиaıvouv каӨapa otov $\chi \omega \rho$ tou animation．

 $\varepsilon v \omega \mu \pi$ ороuv va aпотєлоuv т $\mu \eta \mu a t a \varepsilon$－ vos background φ тiayuعVOU $\mu \varepsilon$ to avti－

 по入и ка入о врүа入єıо үıа tov хоцпıбта， $\mu \varepsilon \varepsilon \lambda \lambda \varepsilon і \psi \varepsilon i \varsigma ~ о \mu \omega \varsigma$ үıa tov впаүүєл $\mu \mathrm{a}$－ tia．

FANTAVISION

Evas $\sigma u v \delta u a \sigma \mu \circ \varsigma$ 2－D үрачıкшv，кı－
 $\mu п о р \varepsilon ı ~ v a ~ п а ı \xi \varepsilon ı ~ \sigma п \mu а г т і к о ~ р о \lambda о ~ б \varepsilon ~ \mu ı а ~ а$ пароибıабๆ．То проүра μ а $\varepsilon \chi \varepsilon$ т $\ddagger \vee$ เ－

 краııv $\sigma \eta \mu \varepsilon i \omega v$ кai va to $\mu \varepsilon$ какіveı ap－ μ оуіка апо т $\eta v \mu$ м σ т ηv ал $\lambda \eta$ ．Mıа т ε－

 frames． H tкavotnta tou o $\mu \omega \varsigma$ عival $\pi \varepsilon$－ рıорı $\sigma \mu \varepsilon \eta \eta \sigma \varepsilon \cup \psi \eta \lambda \varepsilon \varsigma$ ava入uбعıs， праүна пои апоклвıвı вчарноүєц high－ resolution kat video（tou入axıotov проя то пароv）．Пробои тои η вико入ıа хعוрı－ бнои каı η тахитпта．

THE DIRECTOR

Eva ठıачорєтіко вıठоৎ проүрациа－ тоৎ $\mu \varepsilon$ бкопо то animation $\sigma \varepsilon$ ठио ठıa－
 μ । $\sigma \varepsilon ı \rho a \varepsilon v t o \lambda \omega v$（каті $\sigma a v$ ү $\lambda \omega \sigma \sigma a$

 on tou סev eival euko入 η yia tov apxa－

 μ поороuv va $\delta \eta \mu$ ioup η Өouv $\mu \varepsilon$ in 乃оп－

 кон $к$ каı бвіра апо ठıбкєтєऽ $\mu \varepsilon$ frames，
 оторіа．Ато та калитвра＂غрүалвıа＂ tis katnyopias．

AEGIS ANIMATOR

Апо tou прютопороия tou عוठоия

 тои проүраниатоく є६ако入оиӨвı va عו－ vaı to $\sigma \omega \sigma$ то $\varepsilon \rho ү а \lambda \varepsilon ı о ~ \sigma \varepsilon ~ \mu \varepsilon р і к \varepsilon \varsigma ~ \chi р \eta-~-~$
 бхира проүра $\mu \mu$ ата，о $\mu \omega \varsigma ~ \eta$ ठиvатот $\eta-$

ZOETROPE

Eva бuүхроvo проүрациа параүш－
 $\kappa \omega \vee \varepsilon \varphi \varepsilon$ ．Oı ठuvatornteৎ tou a $о$ ороuv 2－ D animation опшऽ кıvПбף，перібтроч каı ठпиıоирүıa avtiк $\varepsilon \mu \varepsilon v \omega v$ ．$\Sigma \varepsilon$ ouv－

 vat o aплоибтероৎ пои μ пореı va u－ парそॄı а入入а а६ıそદı тоv копо．$\Delta \cup \sigma \tau \cup \chi \omega \varsigma$

 тПऽ ०Өovクऽ－overscan）．

PHOTON PAINT II

 бтоv $\chi \omega \rho$ ．Вабіко тои протєр η а η $\overline{\text { б }}$－ vatorךta $\lambda \varepsilon$ ıтоupyiac $\sigma \varepsilon$ HAM mode，$\delta \eta$－ $\lambda a \delta \eta \eta$ rautoxpov η паpouoiaon 4096

 $\sigma \tau \eta \vee$ кıv $\quad \sigma \eta$ avtikeı $\mu \varepsilon v \omega V \mu \varepsilon$ т $\eta \mu \rho \varphi \eta$ brushes．Eva入入актiкп $\lambda u \sigma \eta \sigma \varepsilon \sigma \chi \varepsilon \sigma \eta \mu \varepsilon$ то пропүоuиعvo，a入入а охı ачобเ $\omega \mu \varepsilon$ vo проүра $\mu \mu$ а σ то $\chi \omega \rho о$ тои animation．

MOVIESETTER

Eva проураниа пои о Walt Disney бь－
 үоибє та перічпна cartoons тоu．Eva
 ठıабкєठабп пара бтп боßарך ठоилвıа．

 ठıа апо тпv архך．Апо тоиц пршея $\mu \varepsilon$－ Xpi ta kivou ε vva background．Beßaia бu $\mu \varphi \omega \mathrm{va} \mu \varepsilon$ т η v втаıрвıа то проүра $\mu-$ $\mu a \mu \pi 0 \rho \varepsilon ı$ va uпобтпрı $\varepsilon ı$ каı боßарєऽ пароибıабєıऽ $\mu \varepsilon$ бкопоия п．х．ठıачпиі－

 xpクorף．

 ρa avtı $\mu \varepsilon \tau \omega \pi \iota \zeta \varepsilon \tau a l$ $\sigma \mu \varepsilon \rho a ~ \eta$ AMIGA $\sigma \varepsilon$ $\sigma \chi \varepsilon \sigma \eta \mu \varepsilon$ to computer animation． Na a－

 va ayvonӨouv．
－SCULPT－ANIMATE 4D
－TURBO SILVER 3D
－ANIMAGIC
－FORMS IN FLIGHT II
Kai puбika عival бто ठроно то
 μa va $\mu \pi о р \varepsilon \sigma о и \mu \varepsilon$ va баৎ пароибıа－ боицع．

Елпиそоuиع $\mu \varepsilon$ тп оuvtouп ava甲opa $\mu a \varsigma$ б ε हva tєтоוо $\mu \varepsilon$ уало $\theta \varepsilon \mu$ а va μ по－
 tou $\theta \varepsilon \mu$ атоৎ animation σ Inv AMIGA．

－П$\omega \lambda \varepsilon$ ıtal Amstrad 1512， $640 \mathrm{~KB} \mu \varepsilon 2 \mathrm{DD}$ ，controller үıа HD，$\varphi ı \lambda \tau \rho о$ к．$\lambda \pi$. Kaı عктUாんTทऽ Star NL－10． Tクク． 7247235 Niкос．
－П$\omega \lambda$ ouvtaı Amstrad 1640， 2 drives，EGA monitor， mouse otnv tip T T ωV 190.000 брх．О иполоү！－ отПऽ ouvoঠદuعtal aпо Software．Aко $\mu \eta \pi \omega \lambda \varepsilon l_{-}^{-}$ tal Amstrad $6128 \mu \varepsilon \mu 0$－ voxן $\omega \mu \eta$ OӨоvク кal $\varepsilon \xi \omega$－ тعріко drive 3 ＂бтпV тा－ $\mu \eta \tau \omega v 75.000 \delta \rho x$ ．
 9569180 к．Өєцос．
 иполоүіотпя，царкая
 20 MB，kat єктuாlwths Star NL－10．H o日ovn eivai
 өілтро пробтабıас．О бклпроя ঠıбкоя біvетаі үعцатоя $\mu \varepsilon$ каөє лоүпя проүраицата．Т $\boldsymbol{\text { п }}$ ． 3641937 （ $\omega \rho \varepsilon \varsigma$ 12－3 μ ）， ААЕкоя
－Ta ката甲ерvєтє отія $\pi \omega \lambda \eta \sigma \varepsilon ı \varsigma ; A v$ val kaı av $\varepsilon \chi \varepsilon \tau \varepsilon$ үv $\omega \sigma \varepsilon I \varsigma ~ \pi \lambda п \rho о-$ форікпя тотє μ торєітє va $\sigma \cup \mu \mu \varepsilon т а б х є т \varepsilon ~ о т о ~$ ठเктטо $\pi \omega \lambda \eta \sigma \varepsilon \omega V$ тПร COSMON kal $\chi \omega$ pis va $\mu \varepsilon т а к ı v \eta \theta \varepsilon เ \tau \varepsilon ~ а п о ~ т \eta v ~$ үعוтоvia oas va кعрঠıஎє－ тє аछıлдоүа хрпиата （KAI $\Sigma T H N ~ E П A P X I A) . ~ T \eta \lambda$ ． 2518780.
－Гıa Atari ST，єпєкта⿱㇒ıя $\mu v \eta \mu \eta s, ~ a \lambda \lambda a ү \eta ~ \mu o v o u$ disk drive $\sigma \varepsilon$ апло，$\varepsilon \pi!-$ бкعUعG Atari．TП入． 6476346 Гiavvnc．
－П$\omega \lambda \varepsilon ı t a l ~ \varepsilon к т u \Pi \omega t \eta s ~$ Super $5 \mu \varepsilon$ ка入 $\omega \delta \iota o$ ouv－ ठعбך५ $\mu \varepsilon$ Amstrad 6128，o－ ঠŋүוєя хоךоךя каו 500

甲илла A4．T $\mu \eta 300.000$ б $\rho \mathrm{X}$ ．T $\eta \lambda .7662456$ Av－ брعас．
－ПХпрочорікпя єптотпио－ vé，катохоия бu $\mu \beta$ атои иполоүוбтп，$\mu \varepsilon$ кал η үv由on TПs ع $\lambda \lambda \eta v i k \eta s$ ү $\lambda \omega \sigma \sigma a s$, yia tn ouvta－

 кос．TП入． 3605237.
－П$\omega \lambda \varepsilon \iota t a l$ Amstrad 6128 $\varepsilon ү \chi \rho \omega \mu \circ \varsigma, \varepsilon к т \cup \pi \omega T \eta \varsigma$ Brother $\mathrm{M}-1009$ ，apiotn катаотaon，joystick， games，عпє $\varepsilon \rho \gamma a \sigma \iota \varsigma$ кعıцعขои，ПРОПО，$\beta ı \beta \lambda ı$ ， по $\lambda \lambda$ п перוобıка，μ оуо 99.000 ठpx．λ оү ω a үopas PC．TП入． 9912301 Nikos．
－П$\omega \lambda$ हital Amstrad 6128， тра⿱㇒⿻二丨⿴囗⿱一一 тal $\mu a \zeta!~ \mu \varepsilon$ ка入入u ${ }^{2}$ ， modulator yıa TV，$\beta ı \beta \lambda ı a$ каі проүрациата．Тип 65.000 ठрх．TП入． 4514641 Такпс．
－П$\omega \lambda \varepsilon ı t a i ~ \eta ́ ~ a v т a \lambda \lambda a \sigma \varepsilon-~$ Taı IBM（XT） $10 \mathrm{MB} \mu \varepsilon \varepsilon \mathrm{v}$－ $\sigma \omega \mu a \tau \omega \mu \varepsilon$ vo Modem $\mu \varepsilon$ карта CGA kal $\varepsilon \lambda \lambda \eta$ Vl－ K ωV हmions printer Okidata M 92．T $\eta \lambda$ ． 9828091.
－П$\omega \lambda \varepsilon$ ıtal IBM бuムßatos， 640 K RAM， 20 MB бK $\lambda \eta$－ роч ठІбкос， 2 disc drives， 12＂прaбıv 0 öov $\begin{aligned} & \text { Philips }\end{aligned}$ каі полла проүрациа－ та． $\operatorname{T\eta \lambda .} 3612598$ к．Kapa－ үıavvクs，к．＾оuкопоилоя．
－$\Pi \omega \lambda \varepsilon$ เtaı H / Y IBM PC $\mu \varepsilon 1$ drive 5 1／4＂，бк ${ }^{\prime}$ про ठıбко 10 MB SEAGATE прaøıvo ноvітор，плПктролоүוо IBM Junior，картєя CGA， HERCULES каı проүрац－ ната．TП入． 8044019 Ku－ ріакос．
－Exete xоитu ta＂Com－ puter Graphics＂ 1 a $\alpha \lambda \varepsilon \varsigma!-$ ठєєऽ пои μ пороиv каı Өع入દтє va та аदıппо！－
 221680 к．Тотүарıठа．
－П$\omega \lambda \varepsilon ı t a l ~ A m s t r a d ~ 6128 ~$ $\mu о$ охр $\omega \mu$ оя，хрпоно－
 бхєठоv ацعтахєוрıотоя $\mu \varepsilon$ عүүипоך．Акона סıvo－ vtaı 350 паıXviбıa（ 30 ठı－ бкєтєৎ）， $2 \beta ı \beta \lambda ı a, 1$ joys－ tick каı по $\lambda \lambda$ а перıобıка $\mu \circ$ о $65.000 \delta \rho x$ ．T $\eta \lambda$ ． 5443338 Ntivos．
－ПН入eitai onokaivoupyio drive Commodore 10103 1／2 YIa Amiga 500／1000／2000．Ма弓，$\mu \varepsilon$ то drive ठıvetal kaı η үpa－ птп вүүипоп тои．Тıи
 Baolinc．
 Citizen $120 \mathrm{D}, 6 \mu \eta v \varepsilon \varsigma$ xp\％－ oŋ， 1 xpovo عץүuךon a－ vтіпробшாยוая， 38.000 $\delta \rho x . \operatorname{T\eta \lambda .~} 5128670$ Гו $\omega \rho-$ yos．
－$\Pi \omega \lambda \varepsilon$ ıाтaı Amstrad $1512 \mu \varepsilon$ 2 drives，$\varepsilon ү \chi \rho \omega \mu \circ$ ，$\mu \varepsilon$ ตi λ тро оӨоvクৎ，каІ モктU－ $\pi \omega \tau \eta \mathrm{A}$ Amstrad DPM 3000 kal ta ठUo $\mu \varepsilon \varepsilon \lambda a-$ XIのтєя $\omega \rho \varepsilon \varsigma$ 入हाтоup－ үıas каı $\sigma \varepsilon$ apıoтп ката－ otaon．Tıи 200.000 ठpx． Tп入． 7781724 Гlavvnc．
－$\Pi \omega \lambda \varepsilon ı t a i ~ C o m m o d o r e ~ 64 ~$ $\mu \varepsilon$ каббєточюvo Com－ modore，kal monitor Sanyo 14＂mpagivo ． User＇s quide＋reference manual＋machine code．T1－ $\mu \eta 50.000 \delta \rho x . \operatorname{T\eta \lambda }$ ．（031） 826022 ミعv०甲んv．
－П$\omega \lambda \varepsilon ı t a i ~ C o m m o d o r e ~ 64 ~$ ＋kaбoとто甲 $\omega \mathrm{Vo}$ ．disc
drive +2 joystick＋Paddles － 200 пaıxviઠıa＊avti－ үрачıка＋manuals．Tı 55.000 ठ $\rho \mathrm{x} . \mathrm{T} \eta \lambda .7714034$ $\Delta \eta \mu \eta \tau \rho \eta$ ．
－П$\omega \lambda \varepsilon ı t a i ~ C o m m o d o r e ~ 64 ~$ ＋drive 1541 ＋ 2 joysticks ． 70 maixviठ̈a＊по $\lambda \lambda \varepsilon \varsigma \varepsilon$ ع－ фариоүєя＋$\beta ı \beta \lambda_{1} \alpha \mu$ оvo 55.000 ठ $\mathrm{Xx} . \mathrm{T} \eta \lambda$ ．（031） 810648 Tаббос．
－П$\omega \lambda \varepsilon$ Itai movtikı GENIUS kaivoupyio oto kouti тои μ оvo $8.000 \delta \rho x$ ．T $\boldsymbol{\lambda} \lambda$ ． 5622253 Гiavvnc．
－П$\omega \lambda \varepsilon ı t a l ~ T u r b o-X ~ \delta u o ~ \mu \eta-$ v $\omega v / 640 \mathrm{~K} / 30 \mathrm{MB}$ HD／ 14＂monitor／плпкктодо－ үוo 101 keys／ठعкабєऽ проүраниата．Тпл． 9592372 Гішрүос．
－П$\omega \lambda \varepsilon$ ital Hyundai Super 16 TE， 640 KB RAM，$\mu \varepsilon \varepsilon \gamma-$
 тПоц $\quad \mathrm{T} \eta \lambda$ ．（031） 912881 Taoos．
－П$\omega \lambda \varepsilon$ ıtal Amstrad 1512 PC （2 drives $51 / 4$ ）kaivoup－ ҮІоৎ $\mu \varepsilon 60$ ठıбкєтєऽ（ ε－ чариоүєс，паıхvıбıа）， 2
 ко）， $2 \beta 1 \beta \lambda_{\text {ıa }}$ BASIC．Tı 150.000 б $\rho x . \operatorname{T\eta \lambda .~(031)~}$ 651331 lopঠavŋุ．
－$\Pi \omega \lambda$ ouvtal 2 drives $-51 / 4$ ， o日ov μ ovoxp $\omega \mu \eta$－ DUAL－MULTISYNG－HIGH RESOLUTION，GAME CARD，ka $\lambda \lambda \cup \mu a$ ，software عாi入oүns oas．Tп入． 9524324 Baøı入ns ท́ Гішр－ үOS．
－П$\omega \lambda \varepsilon ı \tau a ı ~ Z X ~ S p e c t r u m ~+~ 2, ~$ $\mu \varepsilon \beta ı \beta \iota \circ$ обпүıוんv ota аүүлıка каı $\varepsilon \lambda \lambda \eta v ı к а, \mu \varepsilon$ $\beta ı \beta \lambda ı a \varepsilon \varphi a \rho \mu о \gamma \omega v$ кaı maıxvidıa．T $\rceil \lambda$ ．（0521） $71495 \Delta \eta \mu \eta \tau \rho \eta$ ．

MIXPG：ATIENIF2

－П$\omega \lambda \varepsilon ı t a ı ~ n ́ ~ a v t a \lambda a \sigma \sigma \varepsilon-~$ tal IBM（XT） $10 \mathrm{MB}, \mu \varepsilon \varepsilon \mathrm{v}$－ $\sigma \omega \mu a t \omega \mu \varepsilon$ vo Modem $\mu \varepsilon$ карта CGA \＆E $\lambda \lambda \eta$ nvik ωv ． Emions printer Okidata 92. T $\eta \lambda .9828091$.
－$\Pi \omega \lambda \varepsilon$ ıtal Amstrad 6128 $\varepsilon ү \chi \rho \omega \mu \circ \varsigma$. Ектитытпя Brother M－1009，apiotn катабта⿱㇒，joystick，
 кє $\mu \varepsilon$ vou，ПРОПО，$\beta \curlywedge \beta \lambda ı$ ， полла перьобкка，μ оио 99.000 ठрх．λ оүш аүорая PC．T $\eta \lambda .9912301$ Niкoc．
－Гia Atari ST，єпгктабぇıc $\mu v \eta \mu \eta \varsigma$ ，аллаүп μ оvou disk drive $\sigma \varepsilon$ aпло，$\varepsilon п \pi-$ окعuعя Atari．Tn入． 6476346 Гiavvnc．
－Ta ката甲єргєтє отіс $\pi \omega \lambda \eta \sigma \varepsilon \iota<$ ；Av val kaı av $\varepsilon \chi \varepsilon \tau \varepsilon$ үv由бعוৎ плпро－ чорікпя тотє μ торєітє va бицивтабхєтє ото ठıктио $\pi \omega \lambda \eta \sigma \varepsilon \omega v$ ths COSMON kaı xwple va
 үвıтоvia oas va кврбוஎє－ т ε аछьолоүа хрпиата． T $\eta \lambda .2518780$.
－$\Pi \omega \lambda$ douvtaı Amstrad 1640， 2 drives，EGA monitor， mouse $\sigma \tau \eta v \tau \mu \eta \tau \omega V$ 190.000 ठрх．О итолоүا－ отทs бuvodeuetal amo Software．Aко $\eta \eta \omega \lambda \varepsilon 1-$ tai Amstrad $6128 \mu \varepsilon \mu \mathrm{o}$－ voxp $\omega \mu \eta$ оөоv $\boldsymbol{\kappa a ı} \varepsilon \xi \omega$－ теріко drive $3^{\prime \prime}$ отпレ $\tau \mu \eta$ T $\omega v 75.000 \delta \rho \mathrm{X}$ ．Tn入． 9515685,9569180 к．Өع－ $\mu \mathrm{O}$ ．
－П $\omega \lambda$ हıtaı Acer $500 * \mu \varepsilon 512$ KB RAM，ঠוплП карта үрарік ω ， 1 FDD 5 1／4， $\chi \omega$ pıs monitor kaı $\mu \varepsilon 30$ бוбкєтєя $\delta \omega \rho о$ ．Т $\boldsymbol{\mu} \boldsymbol{\eta}$ $80.000 \delta \rho \mathrm{x}$ ．T $\uparrow \lambda .9011539$ Nwvtas．
－$\Pi \omega \lambda \varepsilon$ ıtai Star NL－10 $+\varepsilon \lambda$－入пviкous характпрес yia Commodore（ $\mu \varepsilon$ та－ трепетаı каı үıа оицßа－ touc） $40.000 \delta \rho \mathrm{x}$ ． $\mathrm{T} \eta \lambda$ ． （0691） 22529 к． ○оठ $\omega \rho$ ．
－П$\omega \lambda \varepsilon$ हाта IBMPC $\mu \varepsilon \sigma \kappa \lambda \eta$－ ро дıбко $20 \mathrm{MB}, 2$ drives 360 K kaı monitor Philips 12＂прабіvo．T $\eta \lambda .3612598$.
－Emoбтпиоvec плдрочо－ рікпऽ үla ouvtaそŋ кєıц－ vav kal кatoxouc ouд－ ßатои $\mu \varepsilon$ пеוра $\sigma \varepsilon$ Desktop Publishing Znra Екठотікоя окос，Акоип $\mu \varepsilon т а \varphi р а \sigma \tau \varepsilon \varsigma ~ а ү ү \lambda ı к \omega v$, үa入入ık ωV ，ү $\rho \rho \mu a v i k \omega V$ ． $\mu \varepsilon$ бч μ вато．Tпл． 3605237.
－Өغ ঠıapпиібтіка oह oxo－ $\lambda \varepsilon i a . Z \eta t a \mu \varepsilon 2$ о $10 \delta \varepsilon \varsigma 2$－ 3 aro $\mu \omega v-\varphi i \lambda \omega v$ va β－ өnoouv．A $\mu \mathrm{i} \beta \eta \mu \varepsilon$ тп $\varphi о-$ $\rho व$ ．Δ Іаркві 1 ю ρ а то $\mu \varepsilon$－ опиعрı и́ то апоүعuна． Фpovtiotnpla Opǐo－ vT\＆¢．T $\eta \lambda .2527863$.
－П$\omega \lambda \varepsilon$ ıtaı Amstrad 6128 прабіvos бє арібтп ка－ taסtaon oto koutl tou ＊кал λ uमata +2 joystick ठıбкєтоөПкп－$\varepsilon \lambda \lambda$ Пиіко каı aүүлıко manual－ 19 бІккєтєя $\mu \varepsilon 250$ про－ үраниата（Pascal，Turbo Pascal，Discology，Art Studio，ПРОПО，DBase II， полла паıхvıঠıa）－под－ ла $\beta ı \beta \lambda ı а$ каı перıобıка $\sigma \varepsilon$ кал η т $\mu \eta$ ．$T \eta \lambda$ ． 9738860 Nikoc．
－П$\omega \lambda \varepsilon ı t a i ~ T u r b o-X ~(a \mu \varepsilon-~$ тахहוрібтос）2DD μ оvo
 －software $\boldsymbol{*} \varepsilon п \varepsilon \xi \varepsilon \rho$ үaбia кєццะvou＋ү $\lambda \omega \sigma \sigma \varepsilon \varsigma ~ п о о-~$ үрац／иои．Tпл．3604759， 8024926 Mapıoc．
－П$\omega \lambda \varepsilon ı t a ı ~ A m s t r a d ~ 6128 ~$
 полла паıхviঠıa．Тıи 20.000 бох．лоүш ava－ үкпс．Тпл． 9356066 к．Па－ vapictnc．
－$\Pi \omega \lambda \varepsilon ı t a ı ~ A m s t r a d ~ 6128 ~$ $\mu \varepsilon \mu$ оуохр $\omega \mu$ о μ оуітор oтŋv $\tau \mu \mu \eta$ T $\omega v 55.000$ ठрх．Emions avta入aooo－ vtaı games $\sigma \varepsilon$ Amiga 500. $\Pi \omega \lambda$ ouvtai т $\varepsilon \lambda о \varsigma$ каı T．V． Modulators via Amiga $\mu \mathrm{o}$－ vo $7.000 \delta \rho x$ ．T $\eta \lambda$ ．

－Пwגertal Amstrad CPC 464 हYXp $\omega \mu$ оऽ，ठuo drives， 128 K, ROM 6128，$\beta \mathrm{l}$－ $\beta \lambda ı a$, joystick，проүра $\mu-$ $\mu a \tau а, ~ к а \lambda \lambda \cup \mu а т а ~ \mu о v o ~$ $45.000 \delta \rho x . \operatorname{T\eta \lambda .} 9511974$ $\Delta \eta \mu \eta \tau \rho \eta$ ．

Tivovtai дактu入oүpa－甲повıc kaı avauع $\lambda a v \omega$－
 $\pi \omega \pi \eta$ LC 24－10 Star．Tun 400 ठ ρ ．Tn入．（031） 627384 Baow．
－П$\omega \lambda \varepsilon ı t a l ~ A m s t r a d ~ 1512, ~$ $640 \mathrm{~KB} \mu \varepsilon$ 2DD，controller via HD，φ i λ тро к．λ ．Kal
 TП入． 7247235 Niкос．
－Av $\varepsilon \chi \varepsilon \tau \varepsilon$ ta manual $\tau \omega v$ паракаты проүрациа－ Twy：MATHCAD，EUREKA， FIG，STARGLIDER，GUN－ SHIP，ELITE，тіарака $\lambda \omega$ үраштє отпท бוєuӨuvon K．Kwotavtivou，П．Toa入－ סap 74－46，ミaven 67－100．
－П $\omega \lambda \varepsilon$ гıtaı monitor $\varepsilon ү \chi \rho \omega$－ μ ostereo $\mu \mathrm{a}$ दı $\mu \varepsilon$ ठ \quad оo η－ xยıа 2×30 W ката入入пло yia Amiga．Atari Amstrad 6128－464．Oגа $\sigma \varepsilon$ apıotn катабтабп каı $\mu \varepsilon \varepsilon \gamma$－ yunon．Tn入． 5914677 Гішрүos．
－П$\omega \lambda \varepsilon$ ıtaı Apple II／C，apı－ oтп катабтабп，бхモठоv ахрПбњцопоптто，быбкє－ т $\varepsilon \varsigma$ ，коитіа，$\beta \iota \beta \lambda ı a$, паı－ XVІঠıa，проүрациа єпє－
 үрачвоо＂．Тпл． 6532232 Mapıa．
－П$\omega \lambda \varepsilon ı t a ı ~ A m s t r a d ~ 6128$ μ оvoxp $\omega \mu$ о +2 joystick
 E入入nvoaүү λ ıко manual бוбкета каөарıбиои ． кал $\omega \delta$ да кабєто ω vou－ 20 ठІбкєt६ऽ＋ 150 про－ үрациата．Т $\mu \eta 75.000$ бох．Tп入． 5988115 Axi入－ $\lambda \varepsilon a c$ ．
 floppy），$\mu \varepsilon$ по λu software． $T \mu \eta 130.000 \delta \rho x . T \eta \lambda$ ． 8676901 Taknя．
－$\Lambda о ү \omega$ отратвибешс па－
入єৎ тıऽ ү ү $\omega \sigma \sigma \varepsilon \varsigma ~ п р о-~$ үрациатібнои，єпє६єр－ үабтп кєшعvои，ПРОПО，
 Utilities，DBase ill Plus．Tiun Hovo $10.000 \delta \rho x$ ． плпрю $\mu \eta \mu \varepsilon$ avtiкata－
 Холерібп $\Delta \eta \mu \eta \tau \rho ı, ~ K a-~$ оталıas 52，113－63 Aөnva．
 Turbo $4.77 / 10 \mathrm{MHz}, 640 \mathrm{~KB}$ RAM－1FDD $51 / 4^{\prime \prime}$ \＆ 1 FDD 3 1／2 floppie ．color card multi I／O 14＂color monitor， mouse，joystick，проүран－ ната охहठıaons，avti－ үрачіка，game к．$\lambda \pi$ ． $\operatorname{T} \eta \lambda$ ． 9419442 Гішрүос．
－П$\omega \lambda \varepsilon ı t a l ~ A m s t r a d ~ C P C-~$ 6128 прабіvos＋ 11 ठıбке－
甲ариоүшv，$\gamma \lambda \omega \sigma \sigma \varepsilon$ ， Pascal，dBase，$\beta_{1} \beta \lambda ı a$ ．Tı $\mu \eta$ 49.000 ठpx $\mu \mathrm{ovo}$ ．T $\eta \lambda$ ． 5014186 ХрПотос．
 Quickshot $\mu \varepsilon$ Autofire kaı $\beta \varepsilon v t o u \zeta \varepsilon \varsigma$ үIa IBM PC／XT Compatible ouvodevoue－ vo $\mu \varepsilon$ game card．T $\mu \eta$ 5.900 ठрх．бто Kouti tous олокаıvoupyia．TПл． 9914940 Apクs．
－Computer ITT－ATW－XTRA 286／10MHz， 40 MB fixed disk， 2 FDD（ $360 \mathrm{~K}, 1.2 \mathrm{M}$ ）， EGA graphic card， 1.5 M RAM，4T keyboard＋b／W monitor $+\varepsilon \lambda \lambda$ Пvika $\cdot \pi \rho \circ$－ үрациата（DOS 3．3） （Lotus 1．2．3，D－base 3．， wordperfect 5.0 к．$\lambda \pi$ ）． T $\eta \lambda .6929119$ Mapıa．
－ก $\omega \lambda$ हıtal Amstrad 1640 （2 drives $51 / 4$ ）$\mu \mathrm{O}$ ıı $2 \mu \eta$－ v ωv лоү ω avaүкnс $\mu a \zeta$ ， $\mu \varepsilon$ MS－DOS，GW BASIC，ε－ $п \varepsilon \xi \varepsilon р ү а \sigma т \varepsilon \varsigma ~ к \varepsilon \mu ц \vee о и, ~$ проүрациата，utilities， по $\lambda \lambda$ а games，avtiסота к．$\lambda \pi$ ．Т $\mu \boldsymbol{\mu} 180.000$ ठрх． Tп入． 9358896 к．$\Delta \eta \mu \eta$－ трクァ．
－$\Pi \omega \lambda \varepsilon$ eıtal ATS XT $(10 \mathrm{MHz}$ ， 640 Kb ，Hercules，Game port 20 MB ，оклпрос $\delta \mathrm{I}-$ окос， 8 Өирея єпекта－ onc）－Mannesmann Tally printer（ 140 cps ）$+\varepsilon$ п ка проүрациата＊ $\gamma \lambda \omega \sigma \sigma \varepsilon \varsigma$ ，utilities．$T \eta \lambda$ ． 8644744 Kwotac．
－П$\omega \lambda \varepsilon$ ettar Amstrad CPC 6128 वह арібтท катабта－
 T $\eta \lambda .9629010$ K $\omega \sigma$ тас．
－Пineltal Commodore－64 Disk－Drive，проүра μ дата， ßıвлıа к．лп．Т $\eta \lambda .8657082$ \＆ 8839566 Pavia．
－Znteitai проүра μ а A Ү－ ү $\lambda о \varepsilon \lambda \lambda \eta$ VIкои $\lambda \varepsilon \xi$ Iкоu． Г $\rho a \psi \tau \varepsilon$ tov $a \rho i \theta \mu \mathrm{ot} \tau \mathrm{v}$ $\lambda \varepsilon \xi \varepsilon \omega \mathrm{V}$ пои пєрıєХєı каı

тпр тиц тои проүрац－ μ атоs отпV סıहU日uvon Nıко入аои Nıко入ас，TK 1419，＾عuкшбia，Kumpoc．
－П$\omega \lambda \varepsilon$ हाtar Spectrum 48 K 11.000 ס ρx ．，Sanyo DR 202 7.000 брх．，$\mu \varepsilon \tau а \lambda \lambda ı к о$ joystick 4.000 ס $\rho \mathrm{X}$ ，joys－ tick QS $\| 1.500 \delta \rho x$ ．，Turbo interface $3.500 \delta \rho \mathrm{x}$ ， $3 \mathrm{\beta l}$ $\beta \lambda ı a, 2.000$ maıxvidia 5.000 ठpx．ń o $\lambda a \mu \mathrm{a}$ ， 30.000 ठpx．T $\eta \lambda .2220109$ Naoos．
－П$\omega \lambda \varepsilon ı t a l ~ A m s t r a d ~ 6128$ $\varepsilon \gamma \chi \rho \omega \mu$ ся，$\beta 1 \beta \lambda ı a, \pi о \lambda \lambda a$ перьобıка，ооßарєя є－ чариоүعя，utilities，ПРО－ ПО，паıхviฮıa，бходıкєя вчариоүєс．Тнп 85.000 ठрх．TП入．4619455，Ntiva．
－П$\omega \lambda \varepsilon$ ıtal Amstrad 6128 μ оvoxp $\omega \mu$ оя $\sigma \varepsilon$ apıotn катабтабп．ミuvoठعuع－ taı ano manuals，$\beta ı \beta \lambda ı a$ ， joystick， 30 maıxviठia，סı－ бкєтєৎ，ठІбкєтоөŋкп 130 ठІбкетんv．Tఇ入． 8067006 riavvns．
－Zntw हпıкoiv ω via $\mu \varepsilon$ бu－
 X Δ Іаөгты терабтіа би入－ лоүп проүрациатьv yIa IBM PC．Tn入． 7798434 Kwotas．
－П$\omega \lambda \varepsilon$ гital Commodore
 дıа каі үлшобєя про－ үрациатібнои，joystick каı $\beta ı \beta \lambda ı а$ о ε ти η викаı－ pıac．Tl入． $9323551-5$ к．Ko－ лоивхопоидос．
－П$\omega \lambda \varepsilon ı t a l ~ \varepsilon к т u \pi \omega t \eta s ~$ Amstrad DMP 3000 апо $\mu \eta x a v o \lambda o y o ~ \lambda о ү \omega ~ a ү o-~$ рас $\mu \varepsilon ү а \lambda \cup \tau \varepsilon \rho o u . ~ Т \mu п ~$ $30.000 \delta \rho x . \operatorname{T\eta \lambda .}$（0421） 76318 к． Өє 。．
－П ω douvtal：1）Amstrad PC 151220 HD MM＋проүра ната $180.000 \delta \rho x$ ．2） Amstrad PPC 640 K • п по үрациата 120.000 брх． TП入．（0741） 24851 इпupoc．
－П$\omega \lambda \varepsilon$ ıtaı joystick Super Stick 2000 kaveı kaı yıa PC， $3000 \delta \rho x$, ка $\lambda \lambda \cup \mu \mathrm{a}-$ ta LASE סєpuativa үia
 （ $\ulcorner\lambda \omega \sigma \sigma a \mu \eta x a v \eta s$ otov Amstrad，Basic yia apxa－ piouc） $1.500 \delta \rho x . \operatorname{T\eta \lambda }$ ． 9738860 Niкоৎ．
－П$\omega \lambda \varepsilon$ ıtaı Amstrad 1640 （2 DD）μ о $\lambda \iota \varsigma \delta \delta_{0} \mu \eta v \omega v \mu \mathrm{a}-$ $\zeta_{1} \mu \varepsilon 50$ ठஎбктє६，$\varepsilon ா \varepsilon$－
 β ııa，utilities，games kaı полла a $\lambda \lambda$ ．Tıи 480.000 брх．Tท入． 9358896 к．$\Delta \eta \mu \eta$ трпя．
－חhiouvtal Acer 500， Amstrad DMP－3160，μ n Xa － vоүра甲іко харті，впі－ пло，каллицата， Framework，DBASE，Auto－ Cad，T．Pascal，Fortran 77. Tıи $250.000 \delta \rho x . \operatorname{T\eta \lambda .}$ 5732274 к．Пavayı ω тnc．
－Пwheıtal Acer 500＊HD 20， 640 KB，MS－DOS 3．3，
 Star LC－10．Emãns про－ үра μ а Video Club．T $\eta \lambda$ ． 4827594 к．Kиріакопои－ лос．
－П$\omega \lambda \varepsilon$ ıtal Spectrum +2 in－ terface， 2 joystick， 300 проүраниата， 2 ßівлıа пооүраниатібнои．Тіи 40.000 ठ рx．Tๆл． 4952871 Гішрүоя．
－П$\omega \lambda \varepsilon ı t a r ~ A m s t r a d ~ 6128 ~$ （прабіvo μ оvitop）， 7 ठı－ бкєтєя $\mu \varepsilon$ паıхиıঠıa， проүрациата 弓нүрачі－ кпя－цоиवікпя аvтіүрац！－

ка，вчариоүє६，ка $\lambda \omega \delta$ เо үıа $\sigma u v \delta \varepsilon \sigma п ~ \mu \varepsilon$ кабєто－ ¢ ω vo μ ovo 53.000 ठpx． Т $\eta \lambda .8046138$＾عоvapঠоc，
－П$\omega \lambda \varepsilon ı t a ı ~ A m s t r a d ~ 6128$ （прабіvoৎ） 25 ठІбкєтєя
 үрациата＊бєккєтоөпкп －joystick＋ 2 manuals oda $\mu a \zeta, 65.000$ ठ ρx ．T $\eta \lambda$ ．（031） $626430 \Delta \eta \mu \eta$ тр \uparrow ．
－Hindouvtal Turbo－X AT $80286-12 \mathrm{MHz}, 640 \mathrm{~Kb}$ RAM，Hercules $14^{\prime \prime}$ monitor， 1.2 Mb FDD， 20 Mb HD． Mouse Genius GM－6000．E－ ктutherns Star LC－10， Utilities，Turbo－C V． 20 ． manual DR－HALO＊manual $T \mu \eta 300.000 \delta \rho x . \operatorname{T\eta \lambda }$ ． 7782438 โтратос．
－П$\omega \lambda \varepsilon ı t a ı ~ A m s t r a d ~ 1512 ~$ 640 K，ठıбкос 30 MB．Tı μ $160.00 \mathrm{C} \delta \mathrm{x}$ ．П $\omega \lambda$ हıtaı ε－ mogn Amstrad 6128 ع γ－ xp $\omega \mu$ о μ оvitop μ оvo 85.000 ठ рх．T $\eta \lambda .9823235$ к．Δ ıадагтопоидос．
－$\Pi \omega \lambda \varepsilon$ ıtaı Turbo－X 512 K， 2 drives Hercules card（Evos хроvou）＋$\varphi(\lambda \tau \rho о ~ о \theta о v \eta \varsigma$
 натєя пооүрациата＋ 3 ठІбкєто日Пкєৎ．T $\eta \lambda$ ． 2828153 H入ıac．
 PC $\mu \varepsilon$ портока $\lambda ı$ monitor kaı game－card $\mu \varepsilon$ joys－ tick $\sigma \varepsilon$ арібтп катабта－ on．$T \mu \eta 90.000 \delta \rho x$ ． $\operatorname{T\eta \lambda }$ ． 6717126 「iavvnc．
－П$\omega \lambda \varepsilon ı t a l ~ o u v \theta \varepsilon \sigma a i ̈ \zeta \rho$ Yamaha PSR－36，$\sigma \varepsilon$ api－
 9020269 इт $£ \lambda 1 \circ \varsigma$.
－П$\omega \lambda \varepsilon ı t a ı ~ E u r o ~ P C ~ \mu a \zeta ı ~ \mu \varepsilon ~$ 25 ठוбкєт $\varepsilon \varsigma \mu \varepsilon$ проүраи－ цата каі $\varepsilon \lambda \lambda \eta$ viкo MS－

DOS．T $\mu \eta 100.000 \delta \rho x$ ． TПл． 4514641 к．Такпя．
－П$\omega \lambda \varepsilon ı t a ı ~ F a x ~ к а р т а ~ \mu \varepsilon ~$ software kal $\varepsilon \lambda \lambda \eta$ vikec үрациатобєірєя 50.000 $\delta \rho x$ ．Modem Amstrad （карта）$\mu \varepsilon$ software 20.000 ठрх．T $\eta \lambda .6831727$ Гішрүос．
－П$\omega \lambda \varepsilon$ Itaı AMSTRAD 6128＊ $\beta ı \beta \lambda ı \alpha+50$ ठıбкєтعя． Apiotn катaotaon－ маvтаотікп тыц．$T \eta \lambda$ ． 9629010，K $\omega \sigma$ tac．
－П$\omega \lambda \varepsilon$ ıtai Amstrad 6128 прабіvos＋ 25 ठıбкєтєऽ＊ 70 games＊Scart＊ modulator＋joystick ASC＊ E入入nvoayү入ıko manual－
 T $\eta \lambda .2778173$ Гішрүоч．
－П$\omega \lambda \varepsilon$ etal Acro PC－XT， 640 KB， 2 FDD 5 1／4 kap－ тa Hercules，μ оvoхp $\omega \mu \eta$

O日ovn Dual 14＂， 5 Өupec ε－ пєктабךя，$\mu a \zeta 1 \mu \varepsilon \quad 3$ в－ паүүєлиатıка пакєта каı алла проүрациата． Tı $200.000 \delta \rho x . \operatorname{T} \eta \lambda$. （031） 262877 Mapүapıtпс．
－$\Pi \omega \lambda \varepsilon$ ıtai Amstrad 1512 2DD，μ оvoxp $\omega \mu$ о μ ovt－ тор，mouse，ठıбкєтєя， games，бıбкетоӨŋкп，β ！－ $\beta \lambda i a$ ка入入u α ．T $\eta \lambda$ ． 6478832 Гıavvŋc．
－П$\omega \lambda \varepsilon ı t a ı ~ A m s t r a d ~ 1512$ $\varepsilon ү \chi \rho \omega \mu \circ \varsigma \mu \varepsilon$ ठ $\omega \circ$ drives －φ i入t $\rho 0$＋mouse＋ $5 \mathrm{\beta l}$ $\beta \lambda ı \alpha+100$ проүраццата． $T ı \eta 180.000 \delta \rho x . T \eta \lambda$ ． 9702809 Гі $\omega \rho$ үос．
－Eктutiwon Aotpo入oүI－ kou 「عve日入iou Xaptn ota Eג入ŋvika．（AvtiӨع－ бદıc，ouそuүוદ¢，ω робко－ поৎ，єриПvєia тои пла－ vŋтп бє каӨ $\zeta \omega \delta \iota \circ$ ．Апо－ отєлоvtai $\mu \varepsilon$ avtikata－
$\beta о \lambda \eta 1100 \delta \rho x . \operatorname{T\eta \lambda }$ ． 3452386 Апоотодос．
－П$\omega \lambda \varepsilon ı t a ı$ Amiga 500 V 1.3 коцплд $\varepsilon \varepsilon$ арібтп ката－ otaon．Δ ıvetai ε ¡yunon MEMOX．Emıons manuals каі проүрациата．T $\eta \lambda$ ． 2237041，Өavaanc．
－$\Pi \omega \lambda \varepsilon$ Ital XT TURBO－10 MHz ，640KB，1FDD， бклпроч бוбкоৎ 21MB 27 ms ，карта multi $1 / 0$ ， monitor $\delta!\pi \lambda \eta \varsigma$ ouxvotn－ таৎ，по λ ла extra олокаl－ voupyıos，катаплпктікп тиц $\lambda о ү \omega$ avaүкпс．T $\eta \lambda$ ． 7241561 Мпадппп．
－Пی入eital ตорпtos AMSTRAD PPC $640 \mu \varepsilon$ o日ov $\mu \vee \eta \mu \eta$ ，modem kal 2 disk drives $3,5^{\prime \prime}$ ．Divetal عүүunon $4 \mu \eta v \omega \mathrm{v}$ ．T $\mu \eta$ 150.000 брx．T η 入．（031） 226330，＾عบтєрทุ．
－П$\omega \lambda \varepsilon$ ıtal AMSTRAD PC $1640 \varepsilon \gamma \times \rho \omega \mu$ ऽ $+0 \theta$ ov EGA +2 disk drives，$\sigma \varepsilon$ apıotך катaбтaбף．$T \eta \lambda$ ． 2230288，Xрибобтонос．
－Пی入 mpaóvos＋modulator＊ joystick＊manual ． перıобтка＋бıбкєтєя $\mu \varepsilon$ полла проүрациата．
 2914757 \＆2815635， Kwotac．
－$\Pi \omega \lambda \varepsilon ı t a l ~ A m s t r a d ~ 6128 ~$ $\varepsilon \gamma \chi \rho \omega \mu \circ \varsigma \mu \varepsilon$ ка入 $\omega \delta \iota$ үıa $\varepsilon \kappa \tau U \pi \omega \tau \eta$ ，joystick， $\beta ı \beta$ ıа каı проүраццата бє по $\overline{\text { и }}$ ка $\lambda \eta$ т $\mu \eta$ ．$T \eta \lambda$ ． 7719400， 7246459 Xapnc．
－Пwieltal AMSTRAD 1512＊ 2 FDD．бкגпроৎ ठібкоৎ 30 MB HDD＊проүран－ $\mu а т а$－$\beta ı \beta \lambda ı a$ ．Tı μ 140.000 б ρx ．μ ovo．$T \eta \lambda$ ． 2289526，Апиптопя．

KOYПONI \triangle QPEAN KATAXQPHटH乏

AГГЕАIA乏

 TEUXOC ENTEA $\Sigma \triangle \Omega P E A N$ ．Käe Koun yia eva teuxos．Eav өe入ete yia пepigootepa teux η oteiAte каı перібботера коunovia．
－
ONOMATERQNYMO

AIEYOYNEH

полн
T．K．
enarreama
THAEФ＠NO
HMEPOMHNIA

AP TEYXOYE

OAHTIEX XPHLHI THI AIIKETAI \triangle OPO $\mathrm{N}_{2} 20$

ПОАҮПААNO THェ TECHNOSOFT

 щатоऽ ПОАҮП＾ANO тПS عтaipeias

 to prompt tou бuбtף μ атоऽ to $\varepsilon \xi \eta \varsigma:$

PPDEMO a b
Ot параиєтроя а а аора то хpovo

 v $\omega \mathrm{v}$ ．Oı тицє пои μ порєı va паıрvєı вו－
 val 2.

Н парацєтроৎ b ачора тпv uпар $\eta \eta$ охı η Хоu．Av $\delta \omega \sigma \varepsilon \tau \varepsilon \mu$ опоıабппот
 Av $\delta \varepsilon v$ ठ $\omega \sigma \varepsilon \tau \varepsilon$ autทv $া \eta v$ параиєтро

 бп६ŋ тои проүрациатоऽ，Өа прєпєı va патПбєтє аркєтєऽ чорєऽ то плПктро ESC．

FFM

То проүрациа аuto عival عva по入и

 тропо．

Гіа va μ порєбєтє va трє६єтє то проүрациа Өа прєпєı va трє६єтє пра－ ta $\varepsilon v a$ batch file то опоьо каveı т η v ano－ бицгиєбך（ $\mu \varepsilon$ хрпоп тои проүрациатоя PKZIP）．Av $\varepsilon \chi \varepsilon \tau \varepsilon \sigma u \sigma \tau \eta \mu a \mu \varepsilon \delta u o$ drives Өa прєпєا va трє乡єтє то архєוо DOSSH－B．BAT каı Өa прєпєı va топоӨє－
 ठเбкєta．Av $\varepsilon \chi \varepsilon \tau \varepsilon$ бuбтпиа $\mu \varepsilon$ ок $\lambda \eta \rho \circ$
 DOSSH－C．BAT．Фроитібtє пропүоииع－ $\mathrm{v} \omega \varsigma$ va $\varepsilon \chi \varepsilon \tau \varepsilon \mu \varepsilon \tau a k ı v \eta \theta \varepsilon ı$ ото directory пои $\theta \varepsilon \lambda \varepsilon \tau \varepsilon$ va β рібкоvtal ta amoбu－ $\mu \pi เ \varepsilon \sigma \mu \varepsilon v a$ apxधıa．

То проүрациа عivaı поли виколо
 pa $\mu \varepsilon \sigma$ а бта опоіа μ птороuv va $\varepsilon \mu \varphi$ раvt－ otouv ta перı ε хо $\mu \varepsilon v a$ ठuo directories．

 ка η ола та архвıа вvоৎ биүквкрицв－ vou directory，va ta avtıүpa $\psi \varepsilon$ ，va ta $\sigma \beta \eta \sigma \varepsilon ı$ va ta каv ε backup η va $\varepsilon к т \varepsilon \lambda \varepsilon$－
 $\mu \pi о \rho \varepsilon \iota ~ v ' ~ a \lambda \lambda a \xi \varepsilon ı ~ t a ~ a t t r i b u t e s ~ t \omega v ~ a p-~$ $\chi \varepsilon ı \omega v$ ．

MENU

Гіа va трعदєтє то проүрациа аито， av $\varepsilon \chi \varepsilon \tau \varepsilon ~ б к \lambda п р о ~ ठ \iota \sigma к о ~ Ө a ~ п р \varepsilon п є ı ~ v a ~ \varepsilon-~$ кт $\lambda \varepsilon \sigma \varepsilon \tau \varepsilon$ то архモוo MENUS－C．BAT．Av $\varepsilon \chi \varepsilon \tau \varepsilon$ бибтпиа $\mu \varepsilon$ ठиo drives арквı va ε－ $\kappa \tau \varepsilon \lambda \varepsilon \sigma \varepsilon \tau \varepsilon$ то архยוo MENUS－B．BAT．

То проүраниа ठєv عוvaı тוпотє а入入о апо μ іа ү $\lambda \omega \sigma \sigma$ а каӨорі $\sigma \mu$ оu menus． Гıа парабвıүна μ пореıт va бпитоир－ үПбєтє عva $\mu \varepsilon$ vou поu va ка入єı тıऽ ठıa－
 бтпиатоя．

Гia va ठпиіоирүךбєtє та ठıка бая $\mu \varepsilon v o u$ Өa прєпє। va үра廿єтє $\sigma \varepsilon$ عva o－

 бוбкета періла μ ßаvovtaı тобо ठіацо－ ра парабвıүиата обо каı عva архعıо
 тропо тп $\lambda \varepsilon$ ттоирүıа каı тоv тропо $\mu \varepsilon$
tov опоьо μ пореі капоіоৎ va $\delta \eta \mu$ ioup－ үクбモı $\mu \varepsilon$ vou．

О періорібноऽ пои вхєь то проүран－
 $\mathrm{va} \varepsilon \chi \varepsilon \tau \varepsilon$ чорт $\omega \sigma \varepsilon \mathrm{I}$ tov driver ANSI．SYS бт $\mu \vee \eta \mu \eta$ тои ипо \quad оүוбтп оас．Yпар－
 ovoua MENU．MNU．Гia va to xpךбıцо－
 prompt tou $\sigma u \sigma$ т $\eta \mu a t o \varsigma ~ t \eta \vee ~ \varepsilon \xi \eta \varsigma ~ ү p a \mu-~$ $\mu \eta$ ：MENU MENU．MNU
 $\mu \varepsilon \tau \rho о$ кal va $\delta \omega \sigma \varepsilon \tau \varepsilon \mu$ оvo MENU．Σ^{\prime} au－
 $\beta \varepsilon \beta a i \omega \theta \varepsilon เ \tau \varepsilon$ отו to apхعוo MENU．MNU ßрıбкета бto root directory tŋ̧ ठıбке－

GALAXIAN

То клаббıко COIN－OP паıхvıбı，т ω ра

 GALAX－C．BAT，av हХعтє бклпро ठıбко ка। то аpхعıо GALAX－B．BAT av عХعт ε ठuo drives．$\Sigma \tau \eta v \tau \varepsilon \lambda \varepsilon u t a i a \pi \varepsilon p ı \pi \tau \omega \sigma \eta$
 бto drive B．Гia va $\lambda \varepsilon i t o u p \eta \eta \sigma \varepsilon ı$ to maıरviठı хpeıa弓erai kapta үра甲ıкшv

 Өа прєпєı va трєそєтє капоוо проүрац－

 $\xi \omega ү \eta ı v a$ окацๆ．Аито пои прєпєı va ка－ ขєтє عivai va ta катабтря $\psi \varepsilon \tau \varepsilon$ пироßо－ лоvtas ta．Пробохп о $\mu \omega \varsigma$ бє ठио оп－ $\mu \varepsilon ı a$ ．Та вхӨріка бкач η кıvouvtaı бuvع－ $\chi \omega \varsigma$ каı $\sigma \varepsilon$ тактıка хроviка $\delta ı a \sigma т \eta \mu a-$
 роикعтєऽ．Av ката甲єрєtє va та ката－
 тє єпเплєоv $\beta a \theta \mu$ оия．

ЕКПАІФЕҮТIKА ПРОГРАММАТА＂АГГАIKА МЕ COMPUTER，， TOP SOFTWARE HOUSE G．GEORGOUSSIS

A JUNIOR－B JUNIOR－A CLASS－B CLASS－C CLASS－D．CLASS LOWER－PROFICIENCY

[^0]

DIAOEEH：
Tn $\lambda: 8643277$

WHAT'S THE SCORE?

AIRBORN RANGER

P\|RATES
Паі́६тє то ро́ло عvó́ yevvaíou Өa入aбवo-

 v ω aп' óגа пробox'́ बTouc ПEIPATEइ!!

 puter í káriolov фíio oas.

[^0]: Ymapxouv
 бє каөє проүрациа
 20 AEKHEEIE M．CHOICE
 20 • USE OF ENGLISH
 10 ：CONVERSION
 1 －STORY（nou גeinouv $\lambda E \hat{\xi} \xi \mathrm{c}$ ）$)$
 ANTIOETA ウ́ ミYN』NYMA

